
Architectural Integration Patterns for Autonomic Management Systems
Sylvain Frey ¹ ², Ada Diaconescu ¹ , Isabelle Demeure ¹

¹ Infres department
CNRS-LTCI, Télécom-ParisTech

Paris, France
{first name}.{last name}@telecom-paristech.fr

² ICAME department
EDF Research & Development

Clamart, France
{first name}.{last name}@edf.fr

Abstract—Large-scale,  dynamic,  distributed and open 
autonomic  systems  pursuing  multiple, possibly  conflicting 
goals are difficult to design, implement and maintain.  Dealing 
with  the  complex  issues  that  such  systems  raise  requires 
complex,  adaptive management logic.  This paper  focuses on 
the  integration of  autonomic  management  resources  as a key 
feature for building complex autonomic systems. This paper’s 
first  contribution is  an  investigation,  via  a  simple  model,  of 
integration  issues  in  autonomic  management  systems.  The 
discussion is  illustrated  via  a  reference  use  case involving 
smart homes connected to a micro smart grid. The second and 
main  contribution consists  in a  collection  of  architectural 
design patterns, described following the classical form used in 
software engineering. The proposed patterns address different 
classes of integration problems, mostly concerned with conflict 
resolution.  They  are  comparatively  evaluated  via  a  set  of 
quality  attributes  and  exemplified  via  reference  conflict 
situations  in  the  use  case.  Several  possible  extensions  are 
subsequently  identified,  including  various  pattern 
compositions.   The  presented  research  is  part  of  a  more 
general,  broader approach  towards  a  generic,  reusable 
framework  for  designing,  developing and  maintaining 
autonomic systems.
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I.  INTRODUCTION 

Complex  systems  require  complex  autonomic 
management applications to administer them. Large scales, 
dynamism,  distribution,  heterogeneity,  openness  and 
multiplicity  of  (possibly  conflicting)  goals  are  common 
factors  of  complexity  in  modern  computer  systems. 
Designing,  developing  and  maintaining  autonomic 
management applications for such systems is a difficult and 
costly  task,  at  best.  The  availability  of  generic,  reusable 
architectures, frameworks and methodologies would provide 
significant  help for  addressing this problem. While partial 
solutions do exist (e.g. [4,5,6,7,8]), considerable progress is 
still required towards providing a comprehensive, seamlessly 
reusable support for autonomic software. 

The  approach  presented  here  is  to  consider  system 
integration as an essential requirement and challenge facing 
the autonomic computing community [9,12]. Firstly, the pa-
per describes a general approach for designing complex ma-
nagement systems based on a modular, flexible and generic 
model. This approach is illustrated with a concrete use case 
from  the  micro  smart  grid  domain.  Integration  issues  – 
mostly “conflicts” – are highlighted as a major obstacle to 
designing  proper  autonomic  systems.  Secondly,  the  main 
contribution  of  this  paper  comes  as  a  collection  of 

architectural design patterns for system integration, in the 
context of the presented autonomic system model. Following 
the classical  form used in software engineering, these pat-
terns identify an application context, describe an integration 
problem and expose a solution that is exemplified in the pro-
posed use case. Patterns are compared based on a set of qua-
lity attributes and several pattern combinations are proposed.

The structure of this paper is the following: after a review 
of related work in part II, part III exposes a generic model 
for autonomic systems and discusses integration issues. Part 
IV presents a reference use case illustrating the autonomic 
model in concrete situations. Part V describes the proposed 
integration patterns  for  management  systems as  traditional 
software design patterns,  with illustrations in the use case 
and evaluation with respect to pre-defined quality attributes. 
The final section concludes the paper and discusses further 
research perspectives.

II. RELATED WORK

Organisational  patterns  in  complex  systems have  been 
investigated  in  various  research  domains,  most  notably 
including multi-agent  systems [10],  robotics  [27],  service-
oriented enterprise systems [13] or bio-inspired applications 
[19]. Seminal works in artificial intelligence such as [25,27] 
established  the  need  for  sophisticated  architectures  for 
designing and building complex systems. 

The multi-agent  domain shares  certain  paradigms with 
the autonomic computing domain and hence represents  an 
important source of inspiration for integration solutions. For 
instance, [10] provides a rich series of agent organisations, 
with an analysis of their respective features,  strengths and 
weaknesses. While certainly useful, these organisations are 
strongly  coupled  with  the  agent  model  which  is  not 
straightforward  to  apply  in  the  context  of  most  industrial 
autonomic  applications  [35].  A  fortiori,  autonomic 
management  systems feature  specific  organisational  issues 
(such as the management conflicts described below) that the 
agent model is not specialised in. Similarly, [18] defines and 
analyses  “interaction  patterns”  in  multi-agent  populations. 
These patterns are based on specific features of the agents 
considered, such as their tendency to compete or collaborate 
with their peers.  Therefore their  applicability is  limited to 
very  special  cases  of  autonomic  system  designs  (e.g. 
decentralised collaboration amongst autonomic managers). 

Adjacent  to  the  multi-agent  and  autonomic  domains, 
contributions such as [19,20,31] formulate biology-inspired 
patterns based on low-level message-based communications 
(data diffusion, replication, repartition) focusing on concerns 
such as robustness, dynamism and scalability.

In industry, a significant number of solutions have been 
proposed  in  answer  to  integration  issues.  Multiple  service 



and component-oriented technologies such as CORBA [36], 
Java EE [37], .NET [38], Android [39], OSGi [13] or iPOJO 
[14]  targeted  various  properties  such  as  modularity,  code 
reuse, loose-coupling or flexible deployment in large-scale, 
open  computer  systems.  Service-oriented  architectures 
[13,21,22] address interoperability and/or dynamicity issues. 
While such approaches provide good integration solutions at 
a  basic,  technological  level,  they  remain  too  generic  for 
addressing  domain-specific  integration  problems,  such  as 
those  occurring  in  autonomic  systems  (e.g.  goal-level 
conflict resolution). 

Ceylon project  [4]  is  a  previous work relying on such 
technological  base  for  providing  a  domain-specific 
framework  for  complex  autonomic  management  systems. 
Ceylon  proposed  a  generic  solution  for  dynamically 
integrating autonomic management resources into complete 
management loops. However,  Ceylon covered solely some 
of the integration patterns presented here. This paper extends 
and  generalises  Ceylon's  approach  with  a  wider 
investigation  of  integration  solutions  in  the  form  of 
architectural design patterns. While many of such solutions 
have  already been  proposed  and/or  instantiated  in  various 
domains (e.g. multi-agent systems, robotics, service-oriented 
enterprise  systems)  their  applicability  to  the  autonomic 
computing domain remains to be identified and documented.

III. GENERIC MODEL AND INTEGRATION CONFLICTS

A. A generic model for autonomic systems

The model presented here is solely introduced as a basis 
for  illustrating  integration  notions,  issues  (part  IV)  and 
solutions (part V) in autonomic management systems. 

The model makes a clear separation between managed 
application  resources  and  Autonomic  Management 
Resources (AMR), that belong to the application layer and to 
the management  layer,  respectively.  AMRs are specialised 
components  [4]  compliant  with  the  following  “classic” 
model [16]: the AMR  core implements various autonomic 
management functionalities, such as special-purpose Moni-
toring,  Analysis,  Planning  and  Execution  defined  in  the 
MAPE-K  architecture  [1,2];  the  AMR  container embeds 
non-functional features such as communication handlers or 
integration resources (cf. section C below). Communications 
are  based  on  models  that  favour  loose  coupling  between 
AMRs (e.g. publish/subscribe messaging or dynamic bind-
ings between standardised interfaces). For the sake of simpli-
fication and without loss of generality, this paper considers 
that all communications are based on generic “messages”.

In  addition  to  explicit  communication,  the  model  also 
considers  indirect  influences  between  resources.  For 
instance,  an  application  resource  (e.g.  a  heater)  may 
influence another application resource (e.g. a thermometer) 
exclusively via the environment (e.g. via the temperature of a 
room).  Fig.  1  introduces  a  graphical  representation 
formalising the model. 

Based on this model, Fig. 2 depicts a “classic” autonomic 
element, with a single AMR performing the entire autonomic 
management loop for a single managed resource.

B. Complex autonomic management layers

Complex, adaptive management  layers are required for 
administering complex,  ever-changing  application  layers  – 
i.e.  involving  a  high  number  of  heterogeneous,  dynamic, 
unpredictable application resources and multiple conflicting 
management objectives. Building such complex management 
layers can be accomplished by (dynamically) integrating a 
reusable  set  of  simpler  management  components,  or 
resources,  as proposed for  example in the Ceylon project. 
Ceylon [4] considers open, flexible sets of loosely-coupled 
AMRs  implemented  with  advanced  service-oriented 
component  frameworks  [13,14,15].  Ceylon's  AMRs  are 
highly  modular,  reusable  components,  each  one 
implementing one or several  of the MAPE functionalities. 
Using  dynamic  deployment,  binding  and  reconfiguration, 
Ceylon  allows  combining  AMRs  opportunistically  for 
forming complete management chains. 

For instance, multiple Analyser instances with different 
performances  and  execution  costs  may be  run  in  parallel, 
started  or  stopped,  allowing  the  selection  of  the  most 
appropriate one according to available resources, time limits 
or Quality of Service criteria. Based on these principles, the 
management layer can be dynamically extended and adapted 
to a wide range of managed systems, while favouring AMR 
reuse and separation of concerns.  In particular,  AMRs can 
participate  simultaneously  in  several  management  loops 
within the same management layer. A complex management 
chain à la Ceylon is represented in Fig. 3.

Integration becomes a key concern when adopting this 
type of approach for building complex management layers. 
Specifically,  integration  may  occur  “internally”  –  i.e. 
integrating AMRs in order to obtain complete MAPE loops 
within one autonomic system (Fig. 3); and “externally” – i.e. 
integrating independent autonomic management systems to 
form a coherent, global autonomic system (Fig. 4).

Figure 3: complex management chain for a complex managed system [4].
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Figure 2:  representation of an autonomic element.
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The  integration  situations  described  in  Fig.  3  (intra-
system integration) and Fig. 4 (inter-systems integration) are 
slightly  different.  For  the  rest  of  this  paper,  it  will  be 
considered that "AMR integration" encompasses both these 
situations, whether or not the management layer comprises a 
unique system or several ones.

C. Integration issues in complex management layers

While complex management layers featuring large sets of 
heterogeneous,  dynamic  AMRs  are  a  necessity,  they  also 
raise a major and difficult issue: how to actually integrate 
AMRs in order to obtain consistent, coherent management 
systems,  capable  of  reaching  their  administrative  goals. 
Integration  comprises  several  inter-related  sub-problems, 
including  communication,  compatibility,  synchronisation 
and  conflict  resolution.  This  paper  focuses  on  conflict 
resolution, as one of the most difficult issues specific to the 
autonomic  domain.  Further  integration  concerns  will  be 
addressed in future extensions. 

In the context of this work, “conflicts” are defined as the 
clashing  of  contradictory  management  control  flows,  as 
shown on Fig. 5 and 6 (conflicting AMRs are marked with 
an “X”). Several situations may lead to such conflicts. Most 
commonly,  several  AMRs  may  try  to  act  on  the  same 
managed resource, providing conflicting control commands 
and leading to incoherent  behaviours  (left  case in Fig.  5). 
Another  conflict  situation  that  is  typical  to  the  presented 
model  may  occur  within  integrated  management  chains, 
when several communication flows converge onto a single 
AMR  (right  case  in  Fig.  5).  For  instance,  two  Planning 
AMRs are deployed on the same application resource and 
send contradictory commands to the same resource Executor. 
Or,  two Analysers  send  contradictory  reports  to  the  same 
Planner in the management chain. 

In  addition  to  such  direct  conflict  situations,   indirect 
conflicts can be derived as caused by transitive influences at 
the application level (left on Fig. 6) or in the management 
chain (right on Fig. 6). For instance, two devices influence 
temperature in a room, therefore their temperature managers 
are  potentially  in  conflict.  Or,  a  conflict  between  two 
Planners  in  the  management  chain  may  result  from  an 
upstream conflict between two Analysers.

Integrating  autonomic  systems  requires  resolving  their 
integration  conflicts.  Still  following  the  principle  of 

separation of concerns, special-purpose integration resources 
and  specific  integration  communications  are  added  to  the 
model,  as  an  addition  to  core  management  functionalities 
(i.e.  MAPE  functions).  Integration  resources  perform 
specific  conflict-resolution  functionalities,  which  will  be 
described  in  pattern  definitions.  Fig.  7  shows  a  formal 
graphical representation of integration resources. 

There  are  several  ways  integration  resources  can  be 
inserted into the management layer. As shown on Fig. 8, they 
can be: deployed as stand-alone components, or AMRs (left 
in the figure); or injected into an AMR container (centre); or 
mixed with management logic (right). Injecting integration 
logic into an AMR container enables it to intercept and alter 
incoming  and  outgoing  communications,  while  remaining 
completely transparent to the core management logic.

Next section exposes a reference use case to illustrate an 
utilisation  of  our  formalism  for  modelling  concrete 
autonomic  management  systems  and  analysing  conflict 
situations. Possible solution semantics to these conflicts are 
then proposed.

IV. ANALYSIS OF CONFLICTS IN A REFERENCE USE-CASE

This section presents a sample use case formulated with 
the proposed model. Conflicts occurring in this use case are 
reused in part V as examples for introducing the proposed 
conflict-resolution patterns.

A. Autonomic management in smart houses and grids

Let  us  consider  a  smart  house  connected  to  a  smart 
electrical  grid.  Sensors  allow  measuring  environment 
parameters, such as room temperatures and grid load. For the 
sake of simplification,  we consider  that  the grid could be 
either  under  high,  normal  or  low  load,  where  the  load 
represents the ratio between consumption and production in 
the  grid.  High  load  signifies  that  production  should  be 
increased  and/or consumption decreased;  low load implies 
the contrary. A grid undergoing abnormal loads may lead to 
inconvenient energy bills and possibly to blackouts. In this 
scenario, the electrical equipments of the house are expected 
to  participate  in  load  regulation  by  lowering  their 
consumption when the grid is overloaded.

In one of the smart house's rooms, an electrical heater has 
its emission power controlled by two AMRs (cf. Fig. 9). A 
temperature  AMR  (“AP  heaterTemp”),  sensitive  to  the 
temperature  in  the  room and to  user  instructions,  tries  to 
maintain optimal comfort. At the same time, an energy AMR 
(“AP  heaterEnergy”),  sensitive  to  the  grid  load,  tries  to 
reduce the heater's consumption whenever load peaks occur. 
In the house's kitchen, a smart refrigerator comes equipped 
with an energy AMR (“APE refrigEnergy”). In case of high 

Figure 5: direct conflict cases, resource level (left) and management level  
(right).

Figure 7: integration-specific elements of the proposed model.
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Figure 6: indirect conflict cases, resource level (left) and management level  
(right).



load, this AMR can shut down the refrigerator, stopping its 
consumption  for  a  limited  amount  of  time  (typically  one 
hour, once a day) without threatening its food content. 

Fig. 9 represents the use case using the proposed model, 
with  several  interconnected  MAPE-like  AMRs.  Several 
indirect  influences  are  also  exemplified.  E.g.,  the  heater 
indirectly  influences the room thermometer  via the room's 
temperature.  Similarly,  the  refrigerator  and  the  heater 
indirectly  influence  the  load  meter  through  their 
consumptions on the electrical grid. 

B. Semantics of the autonomic systems

Considering  the  described  devices  and  corresponding 
AMRs,  two  conflicts  can  be  identified   and  require 
preventive resolution.

1) Heater management conflict
The  two  Analyser-Planner  AMRs  on  the  heater  (“AP 

heaterTemp” and “AP heaterEnergy”) are conflicting as they 
attempt to control  the same “E heaterPower” Executor for 
setting the heater's emission power. For instance, on a cold 
winter night, the “AP heaterTemp” may want to set a high 
emission value in order to maintain comfortable conditions. 
On  the  other  hand  “AP  heaterEnergy”  may  detect  high 
consumption  levels  on  the  grid  –  since  many  electrical 
heaters would work hard in the neighbourhood – and try to 
lower the heater's power.

This  conflict  happens  because  the  two  “AP”  AMRs 
follow  fundamentally  incompatible  goals:  temperature 
management and energy management. Therefore, an explicit 
solution  to  this  conflict  must  be  provided  for  the  entire 
system  –  heater  and  AMRs  –  to  behave  “properly”. 
Certainly, such solution will highly depend on the expected 
system  behaviour  from  the  user  perspective.  We  propose 
here two business-level approaches for the solution:

“all  or  nothing”:  only  one  of  the  two  “AP”  AMRs 
controls  the  heater  at  any  given  moment;  the  other  one's 
command is ignored; 

“compromise”: an intermediate value is used for setting 
the heater's emission power; this value is the mean of the two 
“AP” AMR advices.

The  “all  or  nothing”  solution  solves  the  conflict  by 
neglecting one of the objectives against the other, whereas 
the “compromise” one tries to fulfil both of them at the same 
time – with the risk of satisfying neither. 

It  is  important  to  ensure  that  the  behaviour  of  the 
management resources is compliant with the semantics of the 
conflict  resolution. Since the latter decouples  management 
decisions (i.e., heater reconfiguration plans) from effects at 

the  resource  level  (i.e.  the  actual  value  of  the  heater's 
emission power),  the AMRs must be able to support  such 
situation.  Indeed,  if  one  AMR  were  adaptive,  it  could 
compensate  for  and  so  cancel  the  effects  of  conflict 
resolution. If both AMRs were adaptive, conflict resolution 
may work but prove inefficient as both AMRs constantly try 
to  compensate  in  opposite  directions.  Hence,  the 
compatibility  between  resolution  strategies  and  targeted 
AMRs to integrate must always be considered. 

For  instance,  let  us  suppose  that  at  time  T  the  “AP 
heaterTemp” AMR proposes a value of 20 for the heater's 
power (on an arbitrary scale), the “AP heaterEnergy” AMR 
proposes  18  and  a  “compromise”  resolution  mechanism 
eventually sets a 19 value on the heater.  An adaptive “AP 
heaterTemp” AMR, monitoring that its temperature objective 
(20) is not reached, might decide at T+1 to compensate and 
propose a value of 22 instead, yielding a final power at 20 
and cancelling the energy AMR's influence, which is in this 
example passive for the sake of demonstration. In the case 
where both AMRs are adaptive, divergent behaviours can be 
expected from the AMRs, as they each pull the value in its 
own direction.

For this use case,  let us consider  that the management 
resources, in particular all the analyser-planner (AP) AMRs, 
are purely reactive and non-adaptive. Therefore, they will be 
compatible with “all or nothing” semantics and will not cheat 
“compromise” solutions. Other scenarios will be considered 
to include adaptive AMRs in future work.

2) Electricity management conflict
The  two  energy  AMRs  operating  on  the  heater  (“AP 

heaterEnergy”) and on the refrigerator (“APE refrigEnergy”) 
are in conflict, since both devices interact with the electricity 
grid  and  influence  its  load  with  their  consumptions. 
However,  this kind of conflict is different from the heater 
management one, since here the two AMRs follow the same 
objective  –  energy  regulation,  while  controlling  different 
managed resources. 

During  a  load  peak,  one  of  the  AMRs  applying 
consumption reductions may be sufficient to bring back the 
load to normal levels, as it indirectly relieves the other AMR 
from doing so. On the contrary,  if  one AMR allows high 
consumption  the  other  one  may  be  forced  to  apply 
consumption  reductions  that  could  have  been  avoided 
otherwise.  Worse  still,  the  two  devices  reducing  their 
consumption  at  the  same  time  might  equally  bring 
undesirable consequences, such as after-effect load surges. 

Therefore, a conflict resolution mechanism is necessary 
for  the two energy AMRs to integrate properly with each 
other and maintain a consistent load. Without going too deep 
into details, two features of this resolution are specifically 
required:

“helpfulness”:  whenever  a  device  could  help  load 
control  by  reducing  its  consumption  without  harming  its 
functioning, this device's energy AMR should command so;

“coordination”:  in case both devices  are available for 
reducing their consumption, they should not trigger it at the 
same  time.  Instead,  they  should  coordinate  and  fairly 
designate a  first  energy  saver  that  will  actually  reduce  its 
consumption, and a second one that will do so only in the 
case where load does not go back to a normal level.

Figure 9: autonomic management in the smart home and grid use case.
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This  description  of  load  management  in  an  electricity 
grid  is  arguably  oversimplified,  yet  it  shows some actual 
issues,  fairness  and  synchronisation,  that  the  smart  grid 
community is  facing [23].  [28] presents previous work on 
more  comprehensive  smart  grid  scenarios  and  load 
management, developed in collaboration with EDF (French 
national  electricity  company).  Part  V  presents  possible 
solutions for achieving this load management approach.

V. DESIGN PATTERNS FOR CONFLICT RESOLUTION

This section presents a number of generic design patterns 
for  addressing  conflict  resolution  in  the  autonomic 
management  layer.  Each  pattern  presentation  starts  with 
elements  of  context,  showing  the  particularities  of  the 
conflict  situations the  pattern  addresses.  Then  the  pattern 
solution is described using the notations introduced in part 
III, with conflicting AMRs identified by an “X”. The impact 
of conflict resolution on the management system is evaluated 
with respect to a set of quality attributes, including:

overhead:  the  additional  computations  and 
communications that  the pattern solution introduces in the 
management chain.

safety: the assurance that neither managed resources nor 
AMRs evolve to an undesirable state.

conceivability:  the  difficulty  in  designing  and 
developing the pattern solution, particularly, with respect to 
integrating  legacy  AMRs  and  handling  different 
management goals.

robustness: the ability of the pattern solution to resist to 
and  recover  from  the  faults  of  its  conflict  resolution 
resources, as well as to handle incorrect input.

evolvability: the ability of the pattern solution to adapt to 
changes  of  the  autonomic  system,  in  particular  to  the 
removal and arrival of conflicting AMRs.

scalability: the ability of the pattern solution to scale up 
to a large number of conflicting AMRs.

 For each pattern an example application is proposed in 
the context of the presented use case (part IV). This section 
ends with a discussion on patterns comparisons and possible 
combinations.

A. Monolith pattern

1) Context
Only a few simple management resources are conflicting, 

the  conflicts  and  their  solution  are  clearly  identified  and 
unlikely to  change in  the  future.  Decoupling  management 
logic and conflict resolution logic is not necessary. On the 
contrary, a separation would induce unnecessary complexity 
and overheads (i.e. over engineering).

2) Description

The logic of AMRs and of conflict resolution resources is 
merged into a monolithic management solution.

3) Evaluation
Being a strongly-coupled solution, the Monolith can be 

globally optimised for the specific logic of conflicting AMRs 

and conflict resolution strategies. Hence, conflict resolution 
overheads  can  be  minimised.  Moreover,  the  solution  is 
predictable and may be safety-proven.

However,  the  Monolith  can  only  be  applied  to 
moderately  complicated  cases  that  are  unlikely  to  evolve 
(few  simple  conflicting  AMRs).  Otherwise  this  solution 
would  become  hard  to  conceive  and  maintain,  since 
introducing new management logic or modifying the conflict 
resolution  strategy  would  imply  recoding  the  Monolith. 
Finally,  as  a  centralised  entity,  the  Monolith  represents  a 
bottleneck for communications with the managed system and 
other autonomic systems.

4) Example application within the smart home use case
The Monolith pattern could indeed be applied to solve 

the heater management conflict: the two “AP” AMRs (“AP 
heaterTemp” and “AP heaterEnergy”)  are  merged with an 
explicit resolution mechanism, implementing either the “all-
or-nothing” or the “compromise” solution.

On the other hand, a Monolith for load regulation in the 
house might prove to be an undesirable solution. However 
predictable, such a Monolith would be difficult to conceive 
with  respect  to  the  specificities  of  each  device  and  their 
management  resources.  Furthermore,  the  Monolith  being 
neither adaptable nor scalable would make it difficult to add 
new “smart” devices to the energy management system.

B. Dealer pattern

1) Context
The execution of conflicting AMRs is triggered by mana-

gement  messages  –  i.e.  AMRs  are  reactive,  event-driven 
components.  The  autonomic  management  architecture  is 
such that the incoming communication flows triggering these 
conflicting AMRs pass through a single upstream AMR (e.g. 
a set of conflicting Planners fed by a single Analyser). 

2) Description

Since  the  flow  of  messages  pass  through  a  shared 
resource  before  triggering  conflicting  AMRs,  there  is  an 
opportunity at this unique point to filter outgoing messages, 
so  as  to  avoid  triggering  conflicting  AMRs  down  the 
management chain. As a result, the filtering component (the 
“Dealer”)  prevents conflicts by starving all but one of the 
conflicting AMRs. This implies that a single path is being 
selected for execution amongst all conflicting possibilities in 
the  management  chain.  At  the  design  level,  the  conflict-
resolution logic of the Dealer can be introduced as a special-
purpose handler in its container. 

3) Evaluation
The Dealer has a low overhead, since it prevents conflicts 

altogether  and  hence  avoids  useless  computations  and 
communications. It does not require the introduction of new 
components  since  the resolution code is  introduced in the 
container  of  an  existing  AMR.  As  the  resolution  logic 
capitalises  on the AMRs'  reactivity  to  input  messages,  no 
modifications  are  required  on  the  conflicting  AMRs.  A 
possible  drawback,  since  the  Dealer  acts  upstream  the 

Figure 10: Monolith pattern.
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conflicting AMRs, it may be unable to detect faults or check 
the actual validity of the AMRs it dispatches messages to. 
The Meta-Manager (section G below) may be combined with 
the Dealer to avoid such situations.

The Dealer can be seen as a single point of failure of the 
management  chain  and  a  bottleneck  for  communications, 
with consequences on robustness and scalability. However, 
since  the  Dealer  relies  on  a  central  upstream  AMR  that 
already exists in the management chain the aforementioned 
limitations are the consequences of the management  chain 
design and not of the pattern solution.

4) Example application within the smart home use case
A Dealer can be deployed in the grid monitoring AMR 

(“M gridLoad” on Fig. 9) that produces load information for 
energy  AMRs  (“AP  heaterEnergy”  and  “APE 
refrigEnergy”). Hence, this Dealer can decide to route “high 
load”  messages  only  to  one  of  the  conflicting  “energy” 
AMRs, preventing the other one from triggering undesirable 
consumption reductions.

One  could  also  imagine  an  extended  Dealer-based 
solution  to  the  heater  management  conflict.  Namely,  a 
Dealer  can  be  added  as  an  additional  component  to  the 
heater's  management  chain,  intercepting  all  incoming 
messages  addressed  to  the  conflicting  “AP”  AMRs  (“AP 
heaterEnergy” and “AP heaterTemp”),  starving one of  the 
two and feeding the other one normally.  This architecture 
would only allow a “all-or-nothing” solution to the conflict, 
very  close  to  the  Controller  pattern  shown  later  in  this 
section. This would be an extended Dealer version, since a 
special-purpose component would have to be added to the 
management chain.

Within the Ceylon project, an early prototype version [3] 
provided  a  generic  mechanism for  conflict  resolution  that 
was similar to the Dealer, in that all AMR messages had to 
pass  via  common  Event  Bus.  Conflict  resolution  was 
executed at this level by filtering out conflicting messages.

C. Aggregator pattern

1) Context
The  autonomic  architecture  is  such  that  all  output 

management  flows  of  conflicting  AMRs  pass  through  a 
single AMR (e.g. several conflicting Planners connected to a 
single Executor). 

2) Description

Contradictory orders or conflict-triggering messages are 
intercepted  by  the  conflict  resolution  resource  –  the 
“Aggregator” – which in turn produces a coherent, conflict-
free  solution  as  its  output.  The  Aggregator’s  conflict 
resolution  logic  can  rely  on  an  abstract  message-filtering 
process  (e.g.  select  higher priority messages or compute a 
weighted  sum),  or  be  inspired  by  additional  business 
expertise. Similarly to the Dealer, the Aggregator logic can 
be encapsulated as a handler in the shared AMR’s container.

3) Evaluation
The  Aggregator  integrates  seamlessly  into  the 

management chain since it does not require modifying any of 

the AMRs’s business logic.  Since it  is placed downstream 
from conflicting AMRs, it can ensure that the final result is 
coherent, in particular in case an AMR is faulty or produces 
unexpected messages.

The  Aggregator’s  synthesis  of  conflicting  communica-
tions introduces variable overheads, depending on the actual 
conflict  resolution  logic  used.  The  Aggregator  does  not 
prevent conflicting AMRs to execute, which may allow for 
wasteful computations in case the synthesis uses the “all or 
nothing”  strategy  (cf.  part  IV).  Being  centralised  (with 
respect to one conflict-resolution situation), it can be viewed 
as a single point of failure and a communication bottleneck. 
However, as for the Dealer pattern, this is a feature of the 
management chain design and is independent from conflict 
resolution.

4) Example application within the smart home use case
An Aggregator is a straightforward solution to the heater 

management conflict: the heater's power emission Executor 
(“E heaterPower” on Fig. 9) is extended with an additional 
conflict resolution logic implementing either the “all-or-no-
thing” or  the “compromise”  solution. Such a smart  heater 
using an Aggregator pattern has been previously investigated 
in [29].

In  the  energy  management  case,  the  conflicting  flows 
(i.e.  the  execution  orders  sent  to  the  heater  and  the 
refrigerator) do not converge to a single point and hence the 
Aggregator pattern is not applicable.

D. Controller pattern

1) Context
Conflicts  involve  extensive  numbers  of  AMRs,  which 

share neither any input nor any output flows (i.e. no single 
upstream or downstream AMR). Neither the Dealer nor the 
Aggregator  pattern  can  be  applied  in  this  case.  Yet, 
conflicting  AMRs  are  still  reactive  to  messages  and  a 
conflict resolution strategy based on message filtering can be 
appropriate.  

2) Description

A  special-purpose  centralised  component  –  the 
“Controller” – prevents clashes among conflicting AMRs by 
diverting  and  controlling  their  incoming  and/or  outgoing 
management flows. Several Controller variants are possible, 
depending  on  the  way  in  which  management  flows  are 
diverted.  In  the  simplest  variant,  the  Controller  is 
implemented within the middleware infrastructure ensuring 
inter-AMR communication (e.g. as a special-purpose service 
within  an  Enterprise  Service  Bus).  It  can  consequently 
intercept  and  control  –  e.g.  filter-out  –  any  management 
flow, thus preventing the simulation activation of conflicting 
AMRs [3]. In a more flexible Controller variant, conflicting 
AMRs  are  allowed  to  receive  all  messages  but  must  ask 
permission  from  the  Controller  before  executing  their 
management  logic  [4].  In  this  variant,  only  management 
flows  that  are  known  to  trigger  conflicting  AMRs  are 
actually diverted and controlled, by configuring the AMRs 
that  send  or  receive  them  to  communicate  with  the 
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Controller. This facility limits conflict-resolution overheads 
to conflicting AMRs. Similarly, conflicting AMRs may be 
allowed to execute, but be obliged to ask for the Controller’s 
permission  before  sending  any  output  management 
messages. In either variant, the Controller does not take part 
in the actual autonomic management business process, since 
it does not act directly on managed application resources. Its 
purpose  is  exclusively  related  to  conflict  resolution.  For 
instance,  projects  such  as  [5,8]  feature  Controller-like 
dedicated conflict resolution resources.

3) Evaluation
The Controller can explicitly ensure desirable properties 

of the AMRs it controls, such as forbidding their simulta-
neous execution or ensuring a priority ranking of their mana-
gement messages. These properties can be safety-proven. 

The  Controller  introduces  a  new  special-purpose 
component  and  requires  additional  communication  for 
conflict resolution. While this introduces certain overheads, 
the incurred delays can be limited to AMR groups that were 
identified as potentially conflicting.   

The interdependence level between the Controller and the 
controlled AMRs is variable, depending on how specific the 
Controller logic is with respect to the AMRs business logic. 
Therefore, the system's designer can adapt their solution to 
trade-offs  such  as  precision  of  conflict  resolution  vs. 
evolvability.

In the first  Controller variant,  the Controller's  decision 
logic may become difficult to figure-out for large numbers of 
conflicting  AMRs.  In  the  last  two  Controller  variants, 
conflicting AMRs are forced to adopt a specific behaviour 
(asking permission), which can be viewed as intrusive.  At 
the same time, the actual AMR logic involved in Controller 
communication  can  be  implemented  as  a  special-purpose 
handler  in  the  AMR container  (Fig.  13).  In  all  cases,  the 
Controller’s centralisation introduces a single point of failure 
and  a  communication  bottleneck,  potentially  hindering 
scalability with the number of conflicting AMRs. The Meta-
Manager pattern (section G below) can be introduced in this 
case to alleviate such situations.

4) Example application within the smart home use case
A Controller can be used in the heater conflict situation 

of  the  smart-home  use  case.  More  precisely,  the  two 
conflicting  “AP”  AMRs  (“AP  heaterTemp”  and  “AP 
heaterEnergy” on Fig. 9) are configured to ask permission to 
an additional Controller component, either before executing 
(i.e.  just  after  receiving  monitoring  messages),  or  before 
sending  their  plans  to  the  Executor.  In  this  solution,  the 
Controller  only  allows  for  an  “all-or-nothing”  resolution 
strategy. Finally, the Controller pattern may be an overkill 
for  the  heater’s  simple  conflict  and was only exemplified 
here for illustration purposes. In [4], Ceylon project provides 
a more comprehensive example of a Controller application. 

E. Hierarch pattern

1) Context
Conflict resolution is a feature of the management layer, 

and it  is not  possible,  or desirable,  to completely separate 
management  logic  from conflict  resolution logic.  Multiple 
conflicting  AMRs  provide  fine-grained  management 
functions (e.g. M, A, P, E or simple MAPE loops), while the 

resolution logic handling these AMRs requires a higher-level 
and more abstract overview of the management process.

2) Description

Conflict resolution is provided by a higher-level AMR – 
the “Hierarch” – featuring both management logic and con-
flict resolution logic. At the autonomic management business 
level, the Hierarch has a broader, more abstract view of the 
managed  application  and  can  thus  take  better-informed 
decisions at the global level. At the conflict-resolution level, 
the  Hierarch  can  capitalise  on  its  business-specific 
knowledge acquired from its global position and scope (in 
comparison to the conflicting AMRs) in order to take better-
informed,  globally-optimised  resolution  decisions.  To 
resolve a conflict, the Hierarch uses special-purpose AMR 
interfaces to act directly on the conflicting AMRs, in terms 
of authoritative commands or optional recommendations.  

The Hierarch differs from the Controller in that it is not a 
dedicated  conflict  resolution  resource,  but  a  higher-level 
manager  that  features  conflict  resolution  amongst  other 
capabilities. Rather than intercepting the management flow 
among conflicting AMRs,  as  in  the Controller’s  case,  the 
Hierarch  executes  in  parallel  with  the  AMRs  and  only 
intervenes when a conflict is detected or predicted. Finally, 
while in the Controller’s case the AMRs’ core business logic 
was completely agnostic to the Controller’s intervention, in 
the Hierarch case the AMRs core business logic may have to 
take into account specific recommendations or orders from 
the Hierarch.  

From a certain perspective, the Hierarch pattern can also 
be compared with the Monolith, since management business 
logic  and  conflict  resolution  logic  are  merged.  However, 
while the Monolith merges the logic of conflicting AMRs 
with the resolution logic, the Hierarch maintains conflicting 
AMRs independent (with all the modularity and flexibility 
advantages  provided  by  that  approach).  Conversely,  the 
Hierarch capitalises on the availability of an already existing 
high-level  AMR  to  place  resolution  decisions  within  the 
context of more knowledgeable management logic.    

Many  research  proposals  within  the  autonomic 
computing domain have proposed hierarchical management 
solutions similar to the Hierarch pattern, e.g. [33,34].

3) Evaluation
The Hierarch involves little overheads since it introduces 

no special-purpose integration component and since it does 
not  divert  “normal”  AMR  management  flows.  Since  its 
resolution  logic  is  mingled  with  and  reliant  upon  its 
management  logic,  the Hierarch’s  evolvability  depends on 
the  evolvability  of  its  management  logic.  With  this 
consideration  in  mind,  the  Hierarch  should  withstand  the 
addition  and  removal  of  various  AMRs  with  minimal 
required  modifications  on  the  integration  infrastructure. 
Since  it  is  centralised,  the  Hierarch’s  scalability  may  be 
limited  by  the  number  of  AMRs  it  can  supervise. 
Nonetheless,  since  the  Hierarch  is  based  on  an  available 
high-level  AMR, this  limitation is  already  inherent  to  the 

Figure 14:  Hierarch pattern.

X X



pre-existing  autonomic  system  design.  With  respect  to 
robustness,  a  failure  of  the  Hierarch  component  would 
remove conflict-resolution support, while leaving the lower-
level autonomic management process unaffected.  

4) Example application within the smart home use case
A Hierarch  can be used to solve the energy-regulation 

conflict.  In  this  case,  the  Hierarch  represents  a  central 
coordinator,  relying  on  a  global  view  of  energy 
consumption/production for controlling energy savings. The 
Hierarch  is  deployed  as  a  stand-alone  AMR  and  sends 
energy-saving  recommendations  and/or  commands  to 
conflicting  “energy”  AMRs  (“AP  heaterEnergy”  and  “AP 
refrigEnergy” on  Fig. 9). Capitalising on its global, higher-
level view of the house's and the grid’s load, it can predict 
future load profiles and propose or impose better-informed 
solutions  to  individual  energy  AMRs.  Supposing  a 
reasonable number of devices in a house, scalability issues 
inherent to centralisation should not be too critical, a priori. 
As  a  more  significant  example,  the  Hierarch  can  be 
beneficially  applied  for  load  management  at  larger  grid 
scopes  (i.e.  neighbourhood,  city  or  country),  in  order  to 
provide high-level energy-management directives based on a 
global grid-load model. In this case, scalability issues would 
require  a  finely-designed  hierarchy  with  progressively 
increasing management abstraction levels.

F. Collaboration pattern

1) Context
The autonomic management logic must address multiple 

administrative concerns, while remaining highly-adaptable to 
frequent changes in managed resources, available AMRs and 
targeted  goals.  A  large,  highly-dynamic  and  open  set  of 
AMRs must be dynamically integrated into coherent mana-
gement chains. Centralised or hierarchical  solutions cannot 
meet scalability requirements and Monolithic conflict resolu-
tion cannot cope with frequent changes of conflicting AMRs.

2) Description

Each  conflicting  AMR  embeds  its  own  conflict 
resolution  logic,  implementing  a  completely  decentralised 
algorithm.  Overall  conflict  resolution  results  from 
collaborations,  negotiations  and/or  competitions  among 
conflicting  AMRs.  Several  Collaboration  variants  can  be 
envisaged, depending on the nature of the AMR coordination 
protocols. For instance, AMRs may use inhibition or voting 
algorithms to  designate  a  “conflict  winner”  that  takes  the 
conflicting management decision. Or, AMRs may negotiate a 
compromise solution. From a design perspective,  conflict-
resolution logic is encapsulated as a special-purpose handler 
within each AMR container. As before, this clearly separates 
core  AMR  business  logic  from  the  resolution  logic 
controlling its execution.

A  possible  variation  of  this  pattern  is  the  stigmergic 
collaboration pattern:  instead  of  interacting  directly  with 
explicit  communications,  the  conflicting  AMRs  influence 
each other via an indirect influence in the environment. 

3) Evaluation
Being  distributed  and  totally  decentralised,  a 

Collaboration  is  likely  to  be  highly robust  –  featuring  no 
single point of failure – and scale up well to a large number 
of conflicting AMRs. Open Collaborations can allow great 
evolvability,  supporting  the  conflicting  AMRs'  churn  and 
their behaviour evolutions over time.

However,  decentralised  systems  are  also  difficult  to 
conceive  and  may show a  high  communication  overhead. 
Complete control, overall optimisation and predictability of 
global system behaviour can also be extremely difficult to 
attain  [11,24].  Therefore,  a  Collaboration  may  be 
inappropriate  in  case  high  reactivity  is  required  from the 
management  system.  Global  safety  properties  of  the 
Collaboration  might  prove  hard  to  figure  out  and  to 
implement. The solution is rather intrusive since it imposes a 
specific  behaviour  (i.e.  collaborating,  negotiating  or 
competing) on the conflicting AMRs.

4) Example application within the smart home use case
A  Collaboration  is  an  extremely  robust  and  scalable 

solution to the energy management conflict. Decentralised, 
peer-to-peer algorithms such as “firefly” [17], [30] or [32] 
are  well-known  for  their  applicability  to  distributed 
synchronisation. Given the limited number of devices in a 
house, this solution might seem like an overkill. However, 
synchronisation  and  coordination  issues  in  smart  grids 
appear  as  well  at  the  city,  region  or  country  level  where 
excellent scalability and robustness are required.

One could also imagine a decentralised solution to the 
heater management conflict: the two “AP” AMRs (cf. Fig. 9) 
could either inhibit each other or compute a mean of their 
plans with a distributed algorithm. However, given the lack 
of  scalability  issues,  such  a  solution  is  arguably 
overcomplicated for this simple case.

G. Meta-Manager pattern

1) Context
The management layer itself needs to be adaptive, self-

configuring,  self-optimising,  self-repairing  and  self-
protecting, in order to cope with versatile and unpredictable 
application resources and contexts. Quantitative parameters 
of the AMRs, as well as conflict resolution resources, must 
be  dynamically  monitored  and  adapted  throughout  the 
autonomic system’s life-cycle.

2) Description

A  Meta-Manager  monitors  and  adapts  the  conflicting 
AMR(s), in parallel with the autonomic layer process (upon 
which it does not intervene directly). Conflicting AMRs are 
managed application resources for the Meta-Manager.

A Meta-Manager is not a Hierarch since it is a manager 
of  management  and conflict  resolution  resources,  whereas 
the  Hierarch  is  an  AMR  in  the  management  layer  that 

Figure 15: the Collaboration pattern.
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performs conflict resolution in the main management flow. 
The Meta-Manager is not a Controller since a Controller is a 
special-purpose  resource  dedicated  to  conflict  resolution, 
whereas  a  Meta-manager  is  a  general-purpose,  meta-level 
AMR, here managing AMRs in order to solve conflicts. The 
Meta-Manager  can  intervene  directly  on  the  AMRs’  core 
business  logic,  or  act  to  adapt  and  optimise  the  AMRs’ 
specific conflict-resolution logic. Finally, the Meta-Manager 
can  also  be  used  to  regulate  special-purpose  conflict-
resolution  components,  such  as  the  Hierarch  or  the 
Controller (cf. section H below).

3) Evaluation
As the Meta-Manager executes in parallel with the lower-

level autonomic management layer, it introduces little or no 
direct overheads in the autonomic management chains. As a 
central decision system, it can manage critical properties of 
the management layer, such as response times or Quality of 
(management) Service. In particular, the Meta-Manager can 
adapt and optimise conflict resolution mechanisms available 
in  the  management  layer.  Provided  that  AMRs  are 
instrumented  for  meta-management,  the  management  and 
meta-management  layers  are  clearly  decoupled  and  the 
Meta-Manager is not intrusive.

Described as such, a centralised Meta-Manager may raise 
single point of failure and scalability issues. However, since 
the  Meta-Manager  does  not  intervene  directly  in  the 
management flows or process, its failure will only suppress 
support  for  conflict  resolution  and  related  adaptations. 
Finally,  the  entire  meta-management  layer  can  be 
generalised and implemented to be as rich and diversified as 
a management layer may be.

4) Example application within the smart home use case
The Meta-Manager is not meant to implement one of the 

conflict  resolution  mechanisms  we  described  before. 
However,  a  Meta-Manager  allows making this mechanism 
adaptive. For instance, supposing an Aggregator is used in 
the  heater  conflict  case  (cf.  Aggregator  pattern),  a  Meta-
Manager can manage this Aggregator and adapt its semantics 
(e.g. use either “all or nothing” or “compromise” strategies) 
according  to  the  context,  or  to  a  run-time  performance 
evaluation.  One  could  also  imagine  a  Meta-Manager 
deploying  several  resolution  patterns  successively,  and 
choosing the best one according to metric criteria. 

Meta-Managers have been proposed by several software 
engineering projects in the autonomic domain, e.g. [4,26].

H. Pattern combinations

The Meta-Manager solution is intended to be combined 
with other conflict resolution mechanisms (or patterns). Ac-
tually it is compatible with all previously presented patterns. 
Conversely, by design, the Monolith is difficult to integrate 
with any other pattern (except for the Meta-Manager). 

The  Dealer,  Aggregator,  Controller,  Hierarch  and 
Collaboration patterns can be combined with each other. In 
particular, a single component can perform both Dealer and 
Aggregator  roles,  resulting  in  a  “Sandbox”  inside  which 
conflicting  AMRs  evolve  under  control,  with  minimal 
intrusiveness.  The  Sandbox  is  not  a  Controller,  since  a 
Controller features additional communications dedicated to 
conflict  resolution, whereas  communications in a Sandbox 
form a standard management flow.

Controller  and  Hierarch  mixed  together  is  the  kind  of 
hybrid  solution  that  would  be  particularly  appropriate  for 
load  management  in  the  smart  home  use  case.  Scalable, 
open, robust but poorly reactive load management is ensured 
by a decentralised Collaboration that takes into account local 
appliances objectives, whereas a centralised Hierarch takes 
arbitrary but quick decisions, forcing designated appliances 
to shutting down in case of global emergency situations (risk 
of blackout).

VI. CONCLUSION AND FUTURE WORK

This  paper  addressed  integration  as  an  essential 
requirement  and  challenge  in  designing,  developing  and 
maintaining complex autonomic systems – i.e. systems that 
are  large-scale,  dynamic,  distributed,  open  and  pursuing 
multiple,  possibly  conflicting  goals.  Such  systems  were 
formally modelled based on a highly modular, flexible and 
open architecture. The paper focused on conflicts as a key 
integration  issue  to  be  addressed  in  autonomic  systems. 
Different conflict types were identified and depicted based 
on the formal model, as well as exemplified in the context of 
a smart home scenario.

The  main  contribution  consists  in  identifying  and 
specifying a suite of architectural design patterns for solving 
different classes of integration-related conflicts. The patterns 
apply to a wide range of situations, depending on the needed 
conflict resolution type, and they are open to variation and 
combination.  While  the  example  use  case  shows  rather 
simple scenarios and resolution mechanisms, the patterns are 
generic enough to embrace a rich spectrum of possibilities. 
Most  of  the  integration  solutions  described  have  already 
been  instantiated  in  various  contexts  of  autonomic 
computing, robotics or multi-agent systems (e.g. “Monolith”, 
“Hierarch”, “Collaboration” or “Meta-Manager”). The main 
contribution here is to identify and collect such architectural 
solutions and propose them as  an extensible  collection  of 
integration patterns for autonomic computing. Additionally, 
a number of the presented integration patterns are specific to 
the  architectural  model  that  was  adopted  for  building 
complex,  adaptive  autonomic  management  systems  (e.g. 
“Dealer”, “Aggregator” and “Controller”).

The patterns were evaluated and compared via a set of 
quality  attributes.  While  still  rather  simple  and  informal, 
these attributes bring an important evaluation feature that is 
critical to choosing the appropriate pattern for a given set of 
requirements. Future efforts will aim at further formalising 
such quality attributes and gathering concrete experimental 
data in support of their evaluation.

The example applications of patterns to the smart home 
use  case  have  been  implemented  in  separate  projects, 
involving  various  contexts  and  technologies.  This  paper’s 
contribution represents a step forward towards providing a 
unified  framework  for  guiding  software  engineers  and 

Figure 17: the Sandbox pattern combination (Dealer + Aggregator).

X

X



domain  experts  from  modelling  to  implementing  and  to 
maintaining autonomic  management  systems.  Future  work 
will  concentrate  on  completing  this  framework  and 
presenting it in the context of the comprehensive use case 
featuring all presented examples.
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