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Abstract

Designing distributed algorithms for mobile ad-hoc sensor
systems is difficult, not at least because of their asynchronous
communication, mobility, absence of shared memory and
high risk of failures. To deal with these challenges, some
techniques like replication and consensus are proposed in the
literature. However, techniques like consensus depend on a
leader election, and this leader can fail. In this paper, we
present some advances inspired from nature for the design
of a decentralized, scalable way for getting and synchroniz-
ing information among components in a point-to-point way.
To achieve this, we address the problem of getting and syn-
chronizing information by defining a Distributed System as a
swarm of agents (termites), which look for information. Ter-
mites are designed with the task of exploring a simulated en-
vironment, sensing some desired data distributed throughout
the space, and sharing their local knowledge regarding the
environment with other nestmates only if they are neighbors.
However, when failure rates increase it is less probable than a
termite completes the entire task by itself before all termites
fail. In order to allow at least one termite to gather the com-
plete information from the environment, several solution ap-
proaches are proposed, like sequential exploration with one
agent as reference, random movements with local informa-
tion exchanges, Levy walks and a pheromone-based explo-
ration algorithm inspired by Ant Colony System. This algo-
rithm allows a termite to explore data in a world and enables
a termite to search other nestmates with more information by
using a trace and by defining a search status given the amount
of local information than a termite has. Results show, how
swarms manage to collect and replicate information from the
entire space even when failures occur. By local interactions,
almost all the termites get complete information from a de-
fined world before failing, without a central control and with
simple local rules.

Introduction
A Distributed System consists of a collection of components
(e.g. processes, agents, robots and nodes) connected via a
network, that coordinate their activities and share system re-
sources, offering different services to users and appearing to
them as a single system (Tanenbaum and Steen, 2006). Co-
ordination and cooperation between processes are necessary
and communication is a key point of Distributed Systems
from a design point of view because each process has partial

knowledge of the environment, acts in a local way and can
fail (Raynal, 2013).

Distributed systems must be scalable. It means being
adaptable to changes in terms of size (to provide an easy
way to add or delete resources), geographical localization of
components and provide easy management independently of
its size (Tanenbaum and Steen, 2006). Scalability involves
the design and implementation of decentralized algorithms
dealing with components that can fail, have no complete
information, take decisions in a local way and use point-
to-point communication because broadcast is not possible.
Lack of scalability usually implies loss of performance of
a system while a system grows up (Tanenbaum and Steen,
2006).

Autonomic Computing addresses complexity with the
idea of a computer system that adapts to changes without hu-
man intervention (Lalanda et al., 2013). Inspired by nature,
the idea is that systems elements manage themselves while
also providing their services (Kephart and Chess, 2003). The
internal behavior of an autonomic element and the set of
relationships with other elements are based on goals that
a designer has embedded in it and on goals incorporated
by other systems through subcontracts with other elements
with its tacit or explicit consent (Kephart and Chess, 2003).
A set of Self-* properties are required to achieve from the
Self-management goal: adapting to the addition or deletion
of components (Self-configuration), detecting and recover-
ing from failures without disruption in the system operation
(Self-healing), finding improvements in the efficiency of a
system (Self-optimization), and anticipating and preventing
of threats (Self-protection) (Lalanda et al., 2013; Kephart
and Chess, 2003).

On the other hand, replication is proposed as an essen-
tial component of failure tolerance in distributed systems.
A well known mechanism of replication in Distributed Sys-
tems is consensus. By consensus, it is expected that replicas
have agreement over a value given local information in each
process (Aguilera, 2010). Different areas of application in-
cludes state and log machine replication in databases (Aguil-
era, 2010; Ongaro and Ousterhout, 2013), motion planning,

Arles Rodrı́guez, Jonatan Gómez, Ada Diaconescu (2015) Towards Failure-Resistant Mobile Distributed Systems Inspired by
Swarm Intelligence and Trophallaxis. Proceedings of the European Conference on Artificial Life 2015, pp. 448-455

DOI: http://dx.doi.org/10.7551/978-0-262-33027-5-ch080



alignment problems (Nedic et al., 2010) and information
processing in sensor networks (computing averages of local
observations) (Ozdaglar and Nédic, 2007).

Some existing consensus algorithms like Paxos (Lamport,
1998) and Raph (Ongaro and Ousterhout, 2013) propose
distributed consensus algorithms based on a leader election
process. This leader receives information and replicates it
to other processes. However, natural systems do not require
a leader directing them and self-organisation relies on col-
lective behaviors that emerge from local interactions as hap-
pens in insect colonies where collaboration emerges from
Stigmergy (Doursat et al., 2012).

An important challenge to deal with failures is to collect,
replicate and synchronize information in a fast way based on
the development of adaptable ways of point-to-point com-
munication. In this paper, we propose a solution to the shar-
ing information problem that deals with some of the chal-
lenges introduced before. A simulated world is defined with
some data of interest distributed in the environment. To get
information in this world, we define agents called termites
with the task of exploring and obtaining this desired data. A
termite can move, sense data in its current location and can
share its local information with other neighbors. However,
termites are unreliable and can crash with a given probabil-
ity pf . Given these conditions, the problem is how to get
at least one termite to collect whole information of a world
before they all crash.

Agents are called “termites” because they follow social
organization and their feeding is carried out via trophal-
laxis, meaning that food is stored in their stomach and it is
transferred among nestmates through mouth-to-mouth feed-
ing (Rodriguez and Gomez, 2011). In this paper, local
information is also inside each agent and local exchange
of information is performed between neighbors that look
for more information present in other nestmates using stig-
mergy. Trophallaxis is important in nutritional dynamics
and communication of many social insects, individual for-
agers return from a food resource and transfer a portion of
their gut material to one or several nestmates. These recipi-
ents subsequently become donors to others, and the process
continues (Suárez and Thorne, 2000).

This paper uses stigmergy for guiding termites in their
search of new information enabling termites to explore a
terrain, to get data information from other nestmates and to
synchronize local information with others. Our approach
inspired by trophallaxis and swarms allows termites to get
the whole data before they crash in a decentralized way. A
swarm features self-organization that allows it to continue
working even if some termites die looking for new informa-
tion. Inspired by this feature, by adding failures to termites
we aim to determine if our proposal can achieve terrain ex-
ploration and failure resistance in a simple way inspired by
nature; and also establish limits. The remaining of this paper
is organized as follows: next section presents a detailed de-

scription of the problem, the following section shows some
approaches to solve the problem including our proposal of
sharing information based on stigmergy and trophallaxis. Fi-
nally a result analysis is performed and some conclusions are
drawn.

The Problem: World exploration
A world is a bidimensional toroidal space defined as a ma-
trix of properties Propswidth×height. Props is a collection
Props = {τw, data}, defined with the following values:
amount of pheromone in the world τw : τw ∈ R ∧ τw ∈
[0, 1] and data : data ∈ R ∧ data ∈ [0, 1]. data repre-
sents some information of interest in this world (e.g. tem-
peratures, altitudes, distance to a determined objective). By
now, data values do not change because the main objective
is to find a way to get all data information and share it in
a fast way. At the beginning all the world positions have a
pheromone value of 0.5 and data is generated for each loca-
tion in a random fashion.

Termites Definition
Multi-agent systems define agents capable of independent
actions with the ability of interacting with others. In order
to achieve their tasks they are required to cooperate, coordi-
nate and negotiate which each other (Balaji and Srinivasan,
2010). Each termite senses information from the environ-
ment and acts by using actuators (Russell and Norvig, 2004).
Agents by now are reactive. It means, that each termite oper-
ates to respond to changes and to satisfy its design objectives
(Russell and Norvig, 2004). Objectives are defined in a ter-
mite program which determines the action to be executed by
an agent according to its local knowledge. The main thread
of each agent looks like algorithm 1. While an agent is alive
(status != Action.DIE) this agent senses its envi-
ronment, then chooses an action based on its perceptions and
finally the action has an effect on the environment.

1 while (status != Action.DIE) {
2 Percept p = environment.sense(this);
3 Action action = compute(p);
4 environment.act(this, action);
5 }

Algorithm 1: Termite main program

In this paper, each termite is designed with the objec-
tive of getting data information in a simulated world of size
width× height. data values are represented as a matrix of
continuous values Rwidth×height. The idea is that termites
cooperate and coordinate among them to get the global data
information starting from local perceptions. The main idea
is that each agent looks for and senses new data locally and
shares its collected datawidth×height at the same time.
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Different perceptions have been defined for termites
Percept = {pheromone, data, socialStatus, neighbor,
msg, loc}. pheromone is a vector Rn with values in [0, 1]
representing the amount of pheromone that a termite has in
its vicinity (Moore neighborhood r = 1 with center in the
termite location (Gray, 2002)); data is the information in the
current location of the termite, socialStatus = {SEEKER,
CARRIER} indicates the status of a termite, neighbor re-
turns the id of a nestmate randomly selected from its Moore
neighborhood if one exists, msg stores new messages re-
ceived from other nestmates and loc returns the current ter-
mite location as a matrix position (row, column).

A termite has the following actions Actions = {none,
down, left, right, up, upleft, upright, downright,
downleft, Die, Collect, Send, Receive}. First nine ac-
tions make reference to movements in the world and Die
stops an agent’s thread to simulate failure. Collect is per-
formed in each round and means to store the data collected
in the local memory of termite. A termite s sends its data
collected Is to a termite r in a msg encoded as a collec-
tion msg = [Is] in a process defined as Send(r,msg).
Sending this information is inspired by traditional Asyn-
chronous Distributed Systems where there are FIFO com-
munication channels (Messages received first are processed
first by each agent (Raynal, 2013)), local communication
(each agent receives and sends messages only to its neigh-
bors), and there is no timing assumptions regarding mes-
sage delay, clock drift or time taken to send a message. The
control returns back to the invoking process after the data
is copied in the buffer of the process that receives (Chandra
and Toueg, 1996; Kshemkalyani and Singhal, 2008). To im-
plement this mechanism there is a FIFO queue mailbox in
the world for each neighbor and an internal queue in each
agent that loads new data using the msg perception. In an
analogous way, each time a termite r receives new informa-
tion from a neighbor Recv(msg), it decodes the received
message msg = [Is] and takes decisions based on this in-
formation depending on the solution approach.

Trophallaxis inspires the information interchange of this
approach. When two termites are occupying adjacent loca-
tions in the world, they exchange information. In this way,
and just like in nature, termites are donors to other neigh-
bors in a cascade scheme called Trophallactic cascade. This
pattern of transfer may prove to be more efficient and result
in more equitable distribution than direct transfer in nature
(Suárez and Thorne, 2000). Communication is added in a
way that each time a termite s senses a neighbor r, it gets its
id, and exchanges its local data information with r by using
Send and Receive in the following way:

• Termite s performs Send(r,msg) wheremsg = {Is}. In
this way a termite s sends its current information Is to r.

• Termite r receives Recv(msg) and completes its infor-
mation Ir = Ir ∪ Is.

Failure Definition
One known type of Distributed System failure is a crash.
That is, a process of a Distributed System halts but is work-
ing fine until it halts. When a process fails nothing is heard
from it. This failure can be identified because the node stops
sending messages and does not report a failure (Tanenbaum
and Steen, 2006; Satzger, 2008). In the proposed model, a
crash is equivalent to the death of a termite. This kind of
failure is implemented by defining a probability of failure
(pf ) for the agents, see Algorithm 2. For example, pf = 0.1
means that a process has a probability of failure in 1 of 10
rounds.

1 //process can fail with a probability of 0.1
2 double probFailure = 0.1;
3 Percept p;
4 Action actions;
5

6 while (status != Action.DIE) {
7 if (Math.random() < probFailure) {
8 status = Action.DIE;
9 }

10

11 p = environment.sense(this);
12 actions = compute(p);
13 environment.act(this, actions);
14 }

Algorithm 2: Crash model for Agent Program of termite i

Solution Approaches
In this section, some approaches are proposed to solve the
aforementioned problem. First, a sequential solution is de-
fined given one termite. After that, more termites that com-
municate among themselves are added into the environ-
ment featuring a random strategy of exploration. Finally
a solution based on stigmergy is proposed. For experi-
ments, a fixed size of the environment is defined (width =
50, height = 50) and several values of pf are defined. The
idea is to estimate the amount of information that agents can
get from the environment.

Sequential Exploration with One Termite
Sequential exploration with one termite is modeled as point
of reference given the definition of the world as a matrix.
Sequential exploration is a good strategy to explore the
world because it implies exploring each location in the world
only one time. The termite i knows its current location as
loci = (x, y) where x corresponds to rows and y corre-
sponds to columns. Given this location a simple movement
program of the termite is the depicted in Algorithm 3 and
Fig 1.

One termite is set to get data in the world of Props50×50

(size of the world equal to 2500). The termite is located in
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1 while (status != Action.DIE) {
2 ...
3 if (x != width-1) {
4 action = right;
5 }else{
6 action = downright;
7 }
8 ...
9 }

Algorithm 3: Sequential exploration for termite i

Figure 1: Sequential Exploration Algorithm.

a random location and the world is explored in a sequential
way. Given this size of the world, a maximum of 2500 move-
ments is enough for completing information. Sequential ex-
ploration experiments were performed 30 times for several
values of pf and results were averaged with the aim of deter-
mining how much information a termite can collect in each
case.

Table 1 presents the summary of experiments for sequen-
tial exploration. Column Data Collected displays the aver-
age and standard deviation of data collected over the 30 ex-
periments performed. As expected, a greater value in the pf
parameter implies a lesser probability of exploring the en-
tire world. For instance, for a pf ≥ 10−3 exploration of the
world was never achieved. For the experiments performed

pf Data Collected Successful
Experiments

10−1 6.8± 6.17 0/30
10−2 113.27± 90.36 0/30
10−3 792.2± 560.57 0/30

4× 10−4 1532.93± 906.9 12/30
10−4 2047± 825 22/30
10−5 2496.2± 14.85 28/30
10−6 2500± 0 30/30
0 2500± 0 30/30

Table 1: Summary of experiments for crash sequential ex-
ploration (Population = 1, width = 50, height = 50. A
pf = 4 × 10−4 is added because 1/(width × height) =
4× 10−4).

with a pf = 4 × 10−4 a full exploration of the world was
achieved only in 12 of the 30 executions. For pf = 10−5

this was achieved in 28 of 30 experiments. The single ter-
mite could explore the entire world in a reliable way only if
pf ≤ 10−6.

Random Exploration with Communication
In these experiments, more than one termite is added to ex-
plore the world in a random fashion starting in random lo-
cations in the same environment (Props50×50). Termites
move in a random way in the environment but have the
same pf . For the same world, experiments were performed
with populations of 10, 30 and 50 termites. A maximum of
3000 iterations were defined to get the complete information
and each experiment was performed 30 times. Termites can
communicate and exchange information with neighbors as
specified in the last section (Termites Definition).

Levy Walk Exploration With Communication
A Levy walk is a movement process in which a particle
makes a sequence of movements in the same random direc-
tion during a time length that depends of another uniform
random variable. Foraging mechanisms present in some an-
imals appears to obey Levy walks (Benhamou, 2007). Levy
Walks have been used for solving the networking cover-
age problem in robots by moving them until find a loca-
tion with an acceptable number of neighbors and make con-
nections (Beal, 2013). In this paper, we adapt the motion
mechanism of (Beal, 2013) in the following way (Alg. 4):
randomDir() returns a random direction dir ∈ {down,
left, right, up, upleft, upright, downright, downleft},
α is a uniform random number that represents the increment
rate of acumulator, T defines a threshold of accumulator
for generate a new direction dir and ∆t defines a increase
of α in terms of time. Several experiments using Levy walks
were performed using T = 1 and ∆t = 1 and varying the
other parameters in the same way it was done with random
exploration.

while status �= Action.DIE do
dir ← randomDir();
α ← U [0, 1] //uniform random number;
repeat

move(dir);
acumulator ← acumulator + α ·∆t;

until accumulator ≥ T ∨ neighbor sensor();
end

Algorithm 4: Reactive Levy walk for termite i (Beal,
2013)

Pheromone-based Exploration
In this approach, each termite determines its movements by
using stigmergy inspired by swarms and the Ant Colony
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System algorithm (Dorigo and Gambardella, 1997). As a
main difference, in this proposal termites are looking for
new information (present in other nestmates) instead of
looking for food. In this way, termites will have a status de-
termined by the amount of local information that each one
has: SEEKERS which are termites that look for others for
getting new information and to explore locations with more
pheromone, and CARRIERS that are termites believing they
have more information than others and explore world loca-
tions with less pheromone. Pheromone value τw defined in
an environment is used. At the beginning all world locations
have a pheromone value of 0.5.

A termite i chooses a direction dir that corresponds to the
application of a biased exploration or an exploitation rule
depending of a random variable q ∈ [0, 1] by applying Eq. 1
(Dorigo and Gambardella, 1997):

dir =

{
exploitation rule if q ≤ 0.9

biased exploration otherwise (1)

Exploitation rule generates a direction depending of a ter-
mite status:

• SEEKERS: If a termite is SEEKER, this termite will
choose the direction with the maximum amount of
pheromone in its vicinity looking for CARRIERS. If all
values in the vicinity are the same, a random direction is
chosen.

• CARRIERS: If a termite is CARRIER, this termite will
choose the direction with the minimum amount of
pheromone in its vicinity. If all values in the vicinity are
the same, a random direction is chosen.

Biased exploration is a random-proportional rule (Dorigo
and Gambardella, 1997) which gives to a termite i a proba-
bility of choosing a direction pd(x, y) depending the amount
of pheromone τw in its vicinity neighborhood(i) (Eq.
2). neighborhood(i) represent the locations in the Moore
neighborhood of i with r = 1):

pd(x, y) =
{

τw(x,y)∑
(k,l)∈neighborhood(i) τw(k,l) (2)

Each time a termite i performs a movement, it updates its
local amount of pheromone τt(i) (local update rule of Eq 3)
and updates the pheromone in this world location τw(x, y)
(global update rule of Eq 4):

τt(i) = (τt(i) + 0.01 ∗ (0.5− τt(i))) (3)

τw(x, y) = τw(x, y) + 0.01 ∗ (τt(i)− τw(x, y)) (4)

If a termite i turns into a SEEKER or finds new informa-
tion, its pheromone value is updated to 0 (τt(i) = 0). Equa-
tion 3 is based on the local update rule of ACS (Dorigo
and Gambardella, 1997) and represents a local update rule
that makes possible that termite pheromone value increases
with the time until a certain point reducing the amount of
pheromone of the world (global update rule of equation 4).
This influence is reduced with time making pheromone in
the world converge to its default value of 0.5. A termite in
SEEKER state can reach a maximum value of pheromone of
0.5.

If a termite i becomes a CARRIER or finds new infor-
mation, the pheromone of the termite gets a value of 1
(τt(i) = 1). Local update rule of Equation 3, produces a
decrease of the local amount of pheromone until reaching
a minimum value of 0.5. At the same time, a CARRIER
increases the amount of pheromone in the world (global up-
date rule Eq. 4). This influence is reduced with the time
making pheromone in the world converge to its default value
(0.5). A termite in a CARRIER state can reach a minimum
value of pheromone of 0.5.

If one termite has more information than the other termite
then it turns into a CARRIER; or a SEEKER in the other
case (Fig 2). In this way and just like in nature, termites
are donors to other neighbors in a cascade scheme called
Trophallactic cascade. Each time that a termite s senses
some another neighbor r, s sends its information to r, r
merge its information (Ir = Ir ∪ Is) and additionally r cal-
culates the difference between information dif = Is \ Ir. In
this way two following scenarios are possible (Fig 2):

• dif = ∅ means (in a local way) that r had at least the
same information as s, so termite r turns into a CARRIER
and sets its pheromone value in one τt(r) = 1.

• Otherwise (if dif �= ∅), r turns into a SEEKER and sets
its pheromone in zero τt(r) = 0.

Figure 2: Communication and Status determination of ter-
mite r.
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Experiments were performed with 10, 30 and 50 termites.
All agents at the beginning are SEEKERS, so they start ex-
ploring the world and when they make contact with another
nestmate information interchange starts. Figure 3 shows
how termites start as SEEKERS (white points) explore the
world and turn into CARRIERS (blue points) over time. Red
locations in the world represent the variation in the amount
of pheromone with the time and how agents explore the
world. Squares 3, 4, 5 and 6 of Figure 3 depict cases where
communication occurs (green circles).

Fig 4 shows how exploration influences the states of the
termites between SEEKERS and CARRIERS. The Termites
axis represents the individuals in the simulation and the Iter-
ation axis represents the average round number. After some
iterations all the population becomes CARRIERS for all the
experiments performed. Bigger populations makes termites
turn into CARRIERS in a fast way.

Figure 3: Pheromone exploration with 10 termites, white
points are SEEKERS and blue points are CARRIERS.

Results Analysis
Tables 2 and 3 present the results for the experiments of Ran-
dom Exploration (column Random Expl.). The column Inf.
Col. shows the average and standard deviation of data col-
lected for agents in the 30 executions. Column Ag. Compl.
is the average and standard deviation of agents with com-
plete data for the 30 executions of each experiment, Table 3
presents the average round number of the agents that com-
pleted information at first place in each experiment.

Figure 4: SEEKERS (red line) vs CARRIERS (blue line),
pf = 0 a) Pop = 10, b) Pop = 30, c) Pop = 50.

In the experiments performed, a smaller value of pf
means more data obtained and more termites with complete
information. However with 10 termites (Pop = 10) it was
impossible to get the complete data for random exploration.
For the given size, random movements and small popula-
tions do not warrant exploration of the whole data in the
3000 iterations specified because is difficult for termites to
meet and communicate and termites tend to repeat paths.
For 30 and 50 termites, for a pf ≥ 4 × 10−4 it is observed
more than one agent with all the data information (Agents
Complete).

Columns Levy Walk Expl. and Ph. Expl. of Table
2 presents the results for Levy walks and pheromone ex-
ploration respectively. Results show that Levy walks and
pheromone exploration work even with 10 termites explor-
ing the world with a pf ≤ 10−4 for Levy walks and a
pf ≤ 4 × 10−4 in some experiments of pheromone explo-
ration. For 30 and 50 termites the entire information is ob-
tained even with a pf = 10−3. More data is collected as
pf decreases. Bigger populations produce more exploration
and a fast information dissemination.

Levy walks are a good technique for exploring new in-
formation because the average of information collected is
higher compared to pheromone exploration (Table 2). How-
ever, the number of agents with complete information be-
fore 3000 iterations is bigger for pheromone exploration in
10 and 30 agents and a pf = 10−3. In table 3, it is observed
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Random Expl. Levy Walk Expl. Ph. Expl.
Pop pf Inf. Col. Ag. Compl. Inf. Col. Ag. Compl. Inf. Col Ag. Compl.

10−2 76.68 ± 33.01 0.00 ± 0.00 108.61 ± 52.53 0.00 ± 0.00 122.03 ± 53.08 0.00 ± 0.00

10−3 897.60 ± 356.59 0.00 ± 0.00 1563.14 ± 335.87 0.00 ± 0.00 1259.91 ± 306.18 0.00 ± 0.00

10 4 × 10−4 1517.67 ± 361.70 0.00 ± 0.00 2073.50 ± 302.45 0.00 ± 0.00 2008.09 ± 314.01 1.57 ± 2.54

10−4 2268.12 ± 172.21 0.00 ± 0.00 2415.21 ± 114.37 3.70 ± 4.04 2327.36 ± 184.36 7.47 ± 2.50

10−5 2442.36 ± 75.39 0.00 ± 0.00 2489.92 ± 28.70 6.53 ± 4.46 2489.10 ± 46.04 9.80 ± 0.41
0 2486.75 ± 6.84 0.00 ± 0.00 2499.66 ± 0.54 7.29 ± 3.98 2500.00 ± 0.00 10.00 ± 0.00

10−2 98.69 ± 30.75 0.00 ± 0.00 235.04 ± 79.92 0.00 ± 0.00 174.59 ± 48.76 0.00 ± 0.00

10−3 1650.54 ± 211.53 0.00 ± 0.00 1991.28 ± 164.40 2.47 ± 4.43 1963.42 ± 190.37 9.03 ± 5.31

30 4 × 10−4 2169.66 ± 132.03 10.07 ± 6.90 2338.12 ± 95.95 20.50 ± 3.15 2218.35 ± 124.45 20.33 ± 2.94

10−4 2405.94 ± 72.88 25.23 ± 2.53 2451.25 ± 47.00 27.47 ± 1.70 2448.38 ± 51.92 27.83 ± 1.53

10−5 2491.70 ± 19.91 29.63 ± 0.76 2492.56 ± 22.91 29.67 ± 0.80 2490.70 ± 26.38 29.67 ± 0.61
0 2500.00 ± 0.00 30.00 ± 0.00 2500.00 ± 0.00 30.00 ± 0.00 2500.00 ± 0.00 30.00 ± 0.00

10−2 128.28 ± 30.35 0.00 ± 0.00 428.46 ± 141.93 0.00 ± 0.00 284.50 ± 72.68 0.00 ± 0.00

10−3 1926.88 ± 156.06 5.90 ± 6.83 2228.73 ± 86.68 22.60 ± 6.42 2051.49 ± 148.74 23.93 ± 4.87

50 4 × 10−4 2230.28 ± 91.13 31.40 ± 4.85 2370.01 ± 57.04 38.07 ± 3.86 2336.00 ± 67.95 40.43 ± 2.80

10−4 2436.82 ± 41.48 45.17 ± 2.09 2478.72 ± 27.30 47.27 ± 1.87 2459.20 ± 47.88 47.67 ± 1.58

10−5 2485.10 ± 23.48 49.23 ± 0.90 2496.95 ± 10.79 49.80 ± 0.41 2493.52 ± 16.37 49.63 ± 0.72
0 2500.00 ± 0.00 50.00 ± 0.00 2500.00 ± 0.00 50.00 ± 0.00 2500.00 ± 0.00 50.00 ± 0.00

Table 2: Summary of average of information collected and number of agents with complete information (pop = 10, 30, 50,
width = 50, height = 50, maxiter = 3000).

Average Best Round Number
Pop pf Random Expl. Levy Walk Expl. Ph. Expl.

10−2 − − −
10−3 − − −

10 4 × 10−4 − − 2162.80 ± 257.22

10−4 − 2500.81 ± 282.07 1994.39 ± 279.98

10−5 − 2581.50 ± 219.28 1834.50 ± 224.54
0 − 2525.78 ± 290.92 1764.35 ± 173.78

10−2 − − −
10−3 − 1751.55 ± 516.21 1180.42 ± 332.79

30 4 × 10−4 2038.16 ± 460.05 1074.10 ± 253.87 818.30 ± 90.19

10−4 1571.40 ± 269.89 925.03 ± 125.36 702.80 ± 54.02

10−5 1401.70 ± 233.84 871.00 ± 148.31 688.87 ± 48.18
0 1404.00 ± 231.14 918.57 ± 129.50 691.07 ± 37.52

10−2 − − −
10−3 1782.59 ± 570.89 750.70 ± 190.13 626.57 ± 76.69

50 4 × 10−4 1008.00 ± 181.80 584.83 ± 77.98 483.90 ± 35.62

10−4 874.00 ± 134.37 550.90 ± 133.62 467.87 ± 33.84

10−5 863.50 ± 144.88 509.03 ± 76.87 458.53 ± 25.03
0 823.57 ± 96.36 548.77 ± 106.91 451.13 ± 34.85

Table 3: Summary of averages of the number of rounds re-
quired for the best agents to collect all information (pop =
10, 30, 50, width = 50, height = 50, maxiter = 3000).

that pheromone exploration allows some individuals collect
information in a faster way than the other two methods, be-
cause the best agents require a small number of rounds in
collect all the information.

In the experiments performed, communication is impor-
tant to reduce the time necessary for getting and dissemi-
nating information. Even communication in random explo-
ration tends to reduce the number of rounds necessary for
a termite to get all the information from 2500 of sequen-
tial exploration with one termite to 823.57 for 50 termites
(Table 3). Results with pheromone exploration are even bet-
ter getting an average number of 451.13 rounds needed for
the best termite to collect the complete data without failures
(pf = 0).

As expected, bigger populations provide a better perfor-
mance for exploration and for sharing information in a de-
centralized, scalable and simple way even with unreliable
termites. Additionally, Table 2 shows how Levy walks and
pheromone-based exploration imply more resistance to fail-
ures compared to random exploration and how a fast data
synchronization implies more resistance to failures.

Conclusions and Future Work
In this paper we proposed a solution for obtaining global
information via a set of unreliable termites (agents), which
explore, get local data and share collected information. The
communication mechanism allows neighbors to interchange
information, enabling agents to acquire global data as the
result of local interactions and cooperation.

It is possible to see how pheromone exploration and
Levy walks improve world exploration compared to ran-
dom exploration. Figure 5 shows how a termite explores the
world (a trace is added on visited locations). As expected,
pheromone exploration tends to avoid path repetition during
exploration vs random exploration where a termite can ex-
plore a determined location more than once. Additionally,
Levy walks cover an area in a better way than random by
maintaining the same direction for some time.

Changes in the status of a termite between SEEKER and
CARRIER, restarts the amount of local pheromone that a
termite has, reinforcing the trace and rewarding communica-
tion. Future work is intended to test other methods to relate
local information with the local update rule of pheromone
(e.g. in the way that more local information could represent
a stronger trace) and study how a termite’s status influences
data synchronization and what would happen if perceptions
were wrong or if there were changes in the environment and
a consensus were required.

Arles Rodrı́guez, Jonatan Gómez, Ada Diaconescu (2015) Towards Failure-Resistant Mobile Distributed Systems Inspired by
Swarm Intelligence and Trophallaxis. Proceedings of the European Conference on Artificial Life 2015, pp. 448-455



Figure 5: Random, Levy Walk and Pheromone Exploration.

If the same world size is maintained and the population
size is increased, a greater amount of information is obtained
and a reduction in the average rounds necessary for gather-
ing the whole world information is achieved. Possible next
steps include studying the influence of each of these algo-
rithms in terms of number of messages and local informa-
tion obtained by each termite maintaining the same density
of agents and performing experiments with different world
sizes.
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Arles Rodrı́guez, Jonatan Gómez, Ada Diaconescu (2015) Towards Failure-Resistant Mobile Distributed Systems Inspired by
Swarm Intelligence and Trophallaxis. Proceedings of the European Conference on Artificial Life 2015, pp. 448-455




