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Abstract 

A framework for automatic performance tuning of 
component-based enterprise applications is presented. A 
non-intrusive monitoring and diagnosis module is 
employed by an application adaptation module that 
automatically chooses optimal component 
implementations for different execution contexts. Both 
modules can optimize their overhead by automatically 
focusing on the application hot-spots, making the 
framework suitable for long-running systems. Currently, 
implementation work is targeted at J2EE systems.  

1. Introduction 

Large enterprise software systems increasingly depend 
on component middleware platforms [1] such as J2EE, 
CCM or .NET in order to reduce time to market and 
increase modularity and reusability. Such applications 
have a high degree of computational complexity which is 
mostly due to two inter-related reasons: business logic 
complexity and runtime platform complexity. Component 
containers provide comprehensive lifecycle and systemic 
services such as security and persistence which support 
the developer-written business logic and simplify 
development. The resulting complexity of the running 
system is orders of magnitude higher than the complexity 
of the business logic code alone, as the component 
containers have a significant runtime footprint. Therefore, 
the performance of such systems is difficult to predict and 
optimise. In addition, the dynamic nature of component 
frameworks (e.g. dynamic inter-component bindings, 
component versioning) as well as runtime changes of the 
execution context (e.g. incoming workload, available 
resources) can render initial optimisations obsolete, as 
different design and implementation strategies perform 
optimally in different running contexts [2][3].  

These factors contribute to highly unpredictable 
system performance for which static performance 
reasoning is often unfeasible.  In contrast, a loosely-
controlled, self-managing, dynamic performance 
optimisation methodology is ideally suited for long-
running systems where human intervention is less 

desirable [4]. This paper presents a framework that 
employs an adaptive approach to performance 
management in component-based systems by integrating 
low-overhead and non-intrusive monitoring with 
application adaptation techniques. The framework targets 
long-running enterprise systems and work is under way to 
implement it for the J2EE platform.  

2. Framework Overview 

The presented framework (Figure 1) comprises two 
main functional modules: i) monitoring and diagnosis and 
ii) application adaptation.  

 
Figure 1: Framework overview 

The monitoring and diagnosis module is responsible 
for acquiring run-time performance information on 
software components, as well as on the software 
application’s execution environment. In addition, it 
analyses collected information and detects performance 
hot-spots. This module, part of our COMPAS framework 
[5][6][7], instruments software components (Enterprise 
JavaBeans in the J2EE case) by augmenting them with a 
proxy layer (Figure 1). The proxy layer is inserted in the 
components upon a non-intrusive introspection process 
that uses meta-data (e.g. deployment descriptors for 
EJBs) to derive essential component structural 
information. Monitoring data is therefore obtained at the 
software component level, matching the abstractions used 
during application development.  
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The application adaptation module is responsible for 
solving the performance problems signalled by the 
monitoring and diagnosis module. The solution proposed 
for providing this functionality is based on the usage of 
multiple, functionally equivalent component 
implementations, each one optimised for a different 
running context (e.g. incoming workload, available 
resources). Application adaptation is performed by 
selecting and activating the optimal component 
implementation(s) in the current running context. 

In the proposed framework, the two functional 
modules operate in an automated, feedback-loop manner: 
software components and their running environment are 
monitored and performance problems identified; the 
software application is optimised and adapted to meet its 
high-level performance goals, in the current environment; 
the resulting software application is subsequently 
monitored and evaluated, optimisation and adaptation 
strategies being possibly tuned in effect. Specialised 
control logic is used to address the stability issues 
possibly introduced by the feedback loop. 

In order to avoid unnecessary performance overhead, 
the monitoring and diagnosis module, as well as the 
application adaptation module can automatically adapt at 
runtime; the two modules can run in a standby state, with 
minimum induced overhead, when the managed 
application meets its performance requirements. They can 
then automatically switch to an active state, in case 
performance problems are being detected. 

3. Adaptive Monitoring and Diagnosis 

COMPAS [7] uses a proxy layer to instrument EJB 
applications. Specifically, each EJB is enhanced with an 
additional entity, the probe. Each probe captures 
performance data related to method execution and 
lifecycle events such as creation, activation or 
passivation. A monitoring dispatcher is used as a central 
management and control entity and it receives the 
essential monitoring data from the probes. Such data is 
displayed graphically in real-time charts showing the 
evolution of response times and stored in log files for 
detailed off-line analysis. Lifecycle events indicating 
component container activity are presented, giving insight 
into middleware behaviour (e.g. component creation 
policies, instance caches) without the need for proprietary 
and non-portable container-level hooks. 

The monitoring dispatcher has an extensible and 
pluggable event-based architecture, allowing third parties 
to integrate proprietary event-handlers such as elaborate 
performance analysis tools. The integration is realised via 
standard interfaces which enforce the communication 
protocol for receiving measurements and events from the 
monitoring dispatcher. The graphical displays previously 

mentioned constitute an example of such event-handlers 
that use the standard extension interfaces. 

In order to reduce the total monitoring overhead, the 
use of adaptive monitoring techniques is proposed, 
aiming at maintaining the minimum amount of 
monitoring at any moment in time while still providing 
enough data collection to identify performance 
bottlenecks. Adaptive monitoring probes can be in two 
main states: active monitoring and passive monitoring (or 
stand-by monitoring). In the former, probes collect 
performance metrics from their target components and 
report the measurements to the monitoring dispatcher. 
The second state defines the light-weight monitoring 
capability of probes as it employs much less 
communication overhead. When monitoring passively, 
probes collect performance metrics and store them 
locally. In this case, measurements are not sent to the 
monitoring dispatcher unless a performance anomaly has 
been detected, or the local storage capacity (the 
monitoring buffer) has been depleted. 

Two model-based probe management schemes for 
enabling diagnosis and adaptation of the monitoring 
process are presented: “Collaborative” (section 3.1) and 
“Centralised” (section 3.2). Both use dynamic models of 
the target EJB application. 

In COMPAS terminology, a dynamic model (or model) 
consists of the monitored components (EJBs) and the 
dynamic relationships (interactions) between them. Each 
interaction is a set of ordered method-calls through the 
EJB system, corresponding to a business scenario such as 
“buy a book” or “login”. The UML representation of an 
interaction is a sequence diagram. 

Models are essential to reducing the monitoring 
overhead without the risk of missing performance hot-
spots in the system. If no models have been obtained for 
an application, all components must be monitored in 
order to identify a potential problem. In contrast, when 
the interactions are known, it is sufficient to monitor top 
level components for each interaction [6]. 

3.1. Collaborative Adaptation and Diagnosis 

In the collaborative approach, probes have a high 
degree of autonomy. They collaborate among themselves 
to determine which component is causing particular 
performance degradation. Additionally, they decide 
which components need to be actively monitored and 
which components can be monitored in stand by. The 
monitoring dispatcher does not take any decision with 
regard to switching probes into stand-by or active states. 

3.1.1 Probes as Independent Collaborative Agents 
Each probe has knowledge about the neighbouring 

(upstream and downstream) probes. In relation to a Probe 



X, upstream probes correspond to the EJBs which call the 
EJB represented by Probe X. Downstream probes are the 
probes corresponding to EJBs being called by the EJB 
represented by Probe X.  

The monitoring dispatcher is responsible for sending 
vicinity information to all probes. This operation is 
performed as new interactions are discovered or recorded. 
The vicinity information is sent to already existing probes 
(corresponding to existing EJB instances) as well as to 
new probes as they are being created. Having the vicinity 
information, probes can collaboratively infer the source of 
performance degradation. A probe performs the following 
steps (Figure 2) to discover the EJB where the problem 
originates (diagnosis): 
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[actively monitoring]

[not actively monitoring]

[no alert] «end»[buffer not full]

alert all 
proxies 

upstream

[performance non-linearity]

[downstream alerts]

alert dispatcher and 
activate monitoring

[no alerts from downstream]

[alert is not caused by 
downstream proxies]

dump buffer to 
dispatcher

[buffer full]

[downstream alerts match 
non-linearity]

 
Figure 2. UML Activity Diagram - Collaborative Diagnosis 

1) Collects performance data when an EJB method is invoked. 
2) If in active monitoring, sends performance data to dispatcher. 
3) Adds performance data to its internal buffer. 
4) Analyses the new buffer containing the new data. 
5) If there are no performance anomalies (see section 3.3) and 
the buffer is full, dumps buffer to the monitoring dispatcher for 
storage and / or further analysis; activity ends.  
6) Performance anomalies having been detected, alerts all the 
probes upstream. The reason is that the probes upstream can 
then take this notification into consideration, when deciding 
whether or not the performance issue originates in one of them 
or other probes downstream from them. 
7) If other alerts from donstream have been received (by this 
probe), it infers that its target EJB might not contribute to the 

performance anomaly and activity jumps to step 8. Otherwise, 
the only contributor to the anomaly is its target EJB. In this 
case, it alerts the monitoring dispatcher of the performance 
problem; dumps the local buffer to the dispatcher for storage 
and further analysis; activity ends.  
8) Since other probes downstream have exhibited performance 
problems, it must be decided whether they are completely 
responsible for the detected anomaly. The algorithm for taking 
this decision can be as simple as computing the numeric sum of 
the anomalies observed downstream and comparing it to the 
anomaly observed at this probe. If they are equal within an 
acceptable margin, it can be decided the probes downstream are 
the only contributors to the performance issues. The algorithm 
can be extended to include historical factors (section 3.3). 
9) If the probes downstream are fully responsible for the 
performance issue, activity ends. 
10) If this probe has a contribution to the performance anomaly, 
alerts the monitoring dispatcher and dumps its local buffer. 

3.1.2 Emergent Alert Management and Generation 
In the collaborative approach, probes decide 

collaboratively which EJBs are responsible for 
performance degradations. Information flow between 
probes is essential to the decision making process. 
Although numerous alerts may be raised by individual 
probes (in a direct correspondence to the cardinality of 
each interaction), only a reduced subset of the alerts are 
actually transmitted to the monitoring dispatcher. In this 
scheme, “false” alarms are automatically cancelled as 
soon as the real origin of the performance degradation is 
detected. The “real” performance hotspots thus emerge 
from the running system due to the collaboration between 
the probes. 

3.2. Centralised Adaptation and Diagnosis 

In the centralised scheme, probes have a smaller 
degree of autonomy than in the collaborative scheme. 
Probes send all the alerts to the monitoring dispatcher 
which is responsible for filtering the alerts, finding 
performance hot-spots and instructing probes to change 
their states between active and stand-by.  

3.2.1 Probes as Quasi-Independent Agents 
Probes are not collaborative, instead they communicate 

only with the monitoring dispatcher. As in the previous 
scheme, each probe maintains a buffer with collected 
performance data and has the capability to detect a 
performance anomaly by performing data analysis on the 
local buffer. Probes however do not have knowledge 
about their neighbours and do not receive alert 
notifications from downstream probes. Therefore, they do 
not have the capability of discerning the source of the 
performance issues and must report all locally observed 
anomalies to the monitoring dispatcher.  



A probe performs the following steps for detecting a 
performance anomaly (see section 3.3): 
1) Collects performance data when an EJB method is invoked. 
2) If in active monitoring, sends performance data to dispatcher; 
activity ends. 
3) If in stand-by monitoring, adds performance data to the 
internal buffer. 
4) Analyses the buffer containing the new data. 
5) If there are no performance anomalies and the buffer is full, 
dumps buffer to the monitoring dispatcher for storage and / or 
further analysis; activity ends. 
6) If a performance anomaly has been detected alerts the 
monitoring dispatcher of the performance problem; dumps the 
local buffer to the dispatcher; activity ends.  

3.2.2 Orchestrated Alert Management and 
Generation 

Using model knowledge (e.g. obtained by an 
interaction recorder [5]) the monitoring dispatcher 
analyses each alert putting it into its interaction context. 
Upon receiving an alert from a probe, the dispatcher 
performs the following steps: 
1) Parses the interaction corresponding to the probe that has 
generated the alert and identifies the downstream probes 
2) Checks for any other alerts received from downstream probes 
3) If there are no alerts from downstream, the dispatcher infers 
that the performance anomaly originates in the EJB 
corresponding to the probe that generated the alert. No other 
EJBs downstream have exhibited a performance problem; 
therefore the only contributor to the anomaly is the target EJB 
of this probe; sends an alert to the appropriate listeners (e.g. 
GUI); activates the probe that generated the alert; activity ends. 
4) Since other probes downstream have exhibited performance 
problems, it must be decided whether they are completely 
responsible for the anomaly detected (see section 3.3) by this 
probe. The algorithm for taking this decision can be similar to 
the one adopted in collaborative (section 3.1.1, step 8). 
5) If the probes downstream are fully responsible for the 
performance issue, activity ends. 
6) If the alerting probe has a significant contribution to the 
performance degradation, sends an alert to the appropriate 
listeners (e.g. GUI), activates the probe. 

The main difference between the collaborative and the 
centralised decision schemes lies in the degree of probe 
independence mapping to CPU and bandwidth overhead 
attributed to the probes and dispatcher; the advantages 
and disadvantages of both schemes follow the effects of 
this difference. In the former, more communication 
occurs between the probes that also use more CPU and 
this may not be applicable in highly distributed, low-cost 
deployments. On the other hand, less communication 
occurs between the probes and the dispatcher and less 
processing takes place in the dispatcher; this allows 
having a remote dispatcher running on a slow machine 
with a poor network connection, possibly over the 
Internet. The latter scheme is better suited for the opposite 
scenario where EJBs are heavily distributed across nodes 

and the dispatcher runs on a powerful machine connected 
to the application cluster via high-speed network. 

3.3. Detecting Anomalies – Discussion 

Detailed techniques for raising performance alerts are 
out of the scope of this paper. Rather, the process of 
narrowing down the alerts to the responsible components 
(the diagnosis process) is what is of interest and was 
described in preceding sections.  This chapter serves as a 
discussion about possible means of identifying a potential 
local performance anomaly from the information 
observed at probe level, so that the reader can understand 
the feasibility of the presented approach. 

Let us consider an internal data buffer present in each 
COMPAS probe, implementing a historical stack-like 
structure of collected execution times for each method in 
the target EJB of the probe. Each element of the method-
stack represents the performance data associated with a 
recorded method-call event. In order to identify a 
performance problem, a meaningful threshold must be 
exceeded. The thresholds for a method can be of type: 
• Absolute value X: at any time, the execution time t 

for the method must not exceed X ms, where X is a 
user-defined value. 

• Relative: at any time, the execution time t for the 
method must not exceed the nominal execution time 
N of the method by more than a factor F times N, 
where F is a user-defined value. Nominal execution 
time is a loosely defined term here; it can denote the 
execution time of a method in a warmed-up system 
with a minimal workload for example.  

• Random complexity: at any time, the execution time t 
for the method must satisfy the relationship t ≤ f(k); 
with f : {0, 1, 2, … n-1, n}  Q, where 
- k is the discrete event counter, increasing with 
each method call, 0 ≤ k ≤ n 
- n is the size of the buffer 
- Q is the interval of acceptable performance 
values (e.g. execution times) 
- f is the custom “acceptable performance” 
function mapping the current call (with index k) to an 
acceptable performance value (e.g. execution time) 
and it can be based on the previous history of the 
method’s performance. Developers can write this 
function and plug it in the alert detection framework. 

The historical call data (the internal data buffer) in the 
probes can be used to derive more complex associations 
in regard to detected performance anomalies. For 
instance, the monitoring dispatcher (which in case of 
alerts receives the buffers from the probes regardless of 
the adaptive management model) can correlate 
performance anomalies from different probes and infer 
causality relationships. In addition, it can correlate such 



data with workload information in the system or database 
information in order to make more complex associations. 

4. Application Adaptation 

The goal of the application adaptation module is to 
overcome detected performance problems by 
automatically optimising component-based applications 
and adapting them to changes in their running 
environment (e.g. workload, available resources), at 
runtime. A solution for meeting this goal is proposed, 
based on the following requirements: i) different design 
and implementation strategies for software components 
are available at runtime; ii) a mechanism is provided for 
automatically alternating the usage of the available 
strategies at runtime, as needed for reaching the high-
level goals of software applications. The following 
subsections briefly present how each of these 
requirements is being addressed. 

4.1. Component redundancy 

Component redundancy is a concept introduced for 
addressing the former requirement. It is defined as the 
presence, at runtime, of multiple component variants 
providing identical or equivalent functionalities with 
different design and implementation strategies. These 
component variants are referred to as redundant 
components. A set of redundant components providing an 
equivalent functionality, or method, constitutes a 
redundancy group (with respect to that functionality). 
Any component variant in a certain redundancy group can 
be functionally replaced with any other component 
variant in the same redundancy group. However, each 
variant is optimised for a different execution context. 
Only one of the redundant components providing certain 
functionality is assigned, at any moment in time, for 
handling a client request for that functionality. The 
selected variant is referred to as the active component 
variant.  

The component redundancy concept, as well as an 
example scenario showing the potential benefits of the 
component redundancy based approach, is presented in 
more detail in [3], [8]. Test results from the example 
implementation indicate that an informed alternation of 
redundant components, each one optimised for a different 
execution context, provides better overall performance 
than either component alone could provide. 

Acquiring multiple redundant components, might seem 
to induce increased application development costs. 
However, the overall cost of both building as well as 
managing a system has to be considered, especially for 
systems with long life-spans. A modular design, in which 
the different strategies are placed into separate redundant 

components, each optimised for a different running 
context, is more flexible and easier to manage than a 
monolithic design, in which a single component is used to 
deal with all possible running contexts. Considering this, 
the overall system costs could actually be smaller when 
using the proposed modular approach for constructing 
software applications than when using the current 
monolithic approach. It is not required for multiple 
redundant components to be available at runtime or 
application deployment time [3]; they can be dynamically 
added, updated or removed from the application, as 
performance problems are detected or solved.  

4.2.  Adaptation mechanism 

The adaptation mechanism addresses the second 
requirement of the proposed adaptation solution. Its role 
is to support and manage redundant components, and 
capitalize on their redundancy for continuously adapting 
and optimising applications in order to meet their 
performance goals (e.g. response time, throughput). The 
adaptation mechanism provides two main functionalities: 
evaluation & decision and component activation. 

The evaluation & decision functionality determines 
which redundant component(s) to activate and when, in 
order to optimise application performance. This 
functionality requires: i) accumulating information on 
components and their running environment; ii) processing 
available information and determining the optimal 
redundant component(s), in certain contexts. The two 
requirements are presented next, followed by a 
description of the component activation functionality. 

Component information is obtained by means of 
adaptive monitoring, at runtime (from individual probes 
or central monitoring dispatcher; section 3). This 
information is formally represented as a component 
description, allowing the adaptation mechanism to 
automatically interpret, analyse and update component 
information. Component providers can optionally supply 
initial component descriptions, at deployment time. An 
initial description can indicate the implementation 
strategy used or the running context for which a 
component was optimised (e.g. increased workload and 
available CPU). It can also provide relative values for 
performance attributes (i.e. delay, throughput), and/or 
their variation with environmental conditions (e.g. the 
response time for a certain method increases 
exponentially with the incoming workload on that 
method). This sort of information can be acquired from 
test results, estimations, or previous experience with 
provided components. Initial descriptions are then 
updated at runtime with accurate monitoring information 
for the actual execution contexts. Thus it can be stated 
that the adaptation mechanism ‘learns’ in time about the 



performance characteristics of the software application it 
has to manage.  This includes knowledge on optimal 
individual redundant components, as well as on optimal 
combinations of redundant components from different 
redundancy groups. 

Decision policies are used to process the available 
information (i.e. current monitoring data and component 
descriptions) and take optimisation and adaptation 
decisions. Decision policies are sets of rules, dictating the 
actions to be taken in case certain conditions are satisfied. 
They can be customised for each deployed application, in 
order to serve the specific application goals (e.g. 
requested performance attributes and their values) and 
can be added, modified or deleted at runtime. 

Two main approaches can be considered for 
implementing the evaluation & decision functionality.  
One approach is to evaluate all redundancy groups 
involved in a certain interaction in a centralised manner 
and select an optimal combination of component variants 
(one variant from each redundancy group), so that the 
overall performance of the considered interaction is 
optimal [10]. The fact that a certain component can be 
used in multiple, separate interactions, with different 
performance requirements, also needs to be considered 
when selecting optimal component variants to activate. 
Expression optimisation techniques (e.g. relational 
database query optimisation methodologies [9]), or 
analytical analysis methods can be adopted when 
considering this centralised approach. Nonetheless, when 
considering large-scale component-based applications, 
global optimisations may not always be needed. 
Evaluating an overall application, potentially consisting 
of hundreds of components, whenever an individual 
component or a group of components does not meet 
performance expectations, might induce unnecessary 
overhead and not scale well. Therefore, a second 
approach is to implement the evaluation & decision 
functionality in a decentralised manner. In this approach, 
if a problem is detected at an individual component level, 
the problem is managed locally, by means of redundant 
component replacement; only components exhibiting 
performance problems are analysed and possibly affected 
by such local optimisations. This approach is potentially 
more scalable than the centralised one, as it avoids 
repeated and possibly unnecessary optimisations of the 
entire application. Nonetheless, exclusively concentrating 
on local optimisations might lead to a non-optimal global 
application. Also, certain problems such as deadlocks, 
oscillating states or chain reactions, cannot be detected or 
solved at an individual component level; a more high-
level view is needed to detect and solve such cases. 

For these reasons, both the centralised and 
decentralised approaches can be used, as needed. That is 
adaptation mechanisms with different scopes (e.g. single 

component, component group, or global application), can 
be employed, organised in a hierarchal manner. In this 
scenario, detected problems can be managed locally 
and/or signalled vertically up to the global level. A clear 
protocol is to be specified for allowing different 
adaptation mechanisms to communicate. This approach 
allows for local application problems (e.g. at component 
level) to be solved locally, when possible, while also 
supporting global optimisations, when necessary. 
Adaptation mechanisms (at various hierarchical levels) 
can be dynamically activated or deactivated, in order to 
reduce overhead, while matching optimisation needs. 

The component activation functionality dynamically 
enforces optimisation decisions into the managed 
application. This functionality involves activating the 
redundant components indicated by the evaluation & 
decision functionality as being optimal. A request 
indirection mechanism is used for implementing the 
component activation functionality. That is, incoming 
client calls are directed to an instance of the active 
component variant, upon arrival. When the active 
component is changed, new incoming requests are 
directed to instances of the new active component. State 
transfer is not needed in this case, as client requests are 
not transferred between instances of different 
components; a particular interaction always finishes 
execution with the component instances it started with.  

5. Current Status and Future Work 

The basic underlying monitoring infrastructure has 
been largely implemented. It employs a completely 
automated and portable installation procedure which can 
take an existing J2EE application and insert the proxy 
layer into each of its EJBs. The monitoring dispatcher can 
currently receive and feed performance data into real-time 
graphical consoles that display method-level events and 
execution time evolution charts. The dispatcher uses basic 
relative thresholds to indicate performance anomalies. In 
addition, lifecycle characteristics such as instance creation 
and deletion are displayed and all events are logged onto 
physical storage. At this stage, probes can be activated 
and deactivated manually and are designed to support 
additional control mechanisms and custom alert 
generation logic. The monitoring infrastructure has been 
verified to work with several applications (ranging from 
small sample ones to Sun Petstore or IBM Trade3) 
deployed on IBM WebSphere, BEA Weblogic and JBoss. 
Experimental results related to monitoring accuracy and 
overhead in COMPAS are presented in [6]. Work is 
underway to implement the two monitoring adaptation 
and diagnosis schemes discussed. Execution models are 
needed for the monitoring adaptation to work; two main 
approaches towards implementing the interaction recorder 



functionality were adopted and implemented.  
The first approach uses non-intrusive probes to extract 

method execution events from the running application. It 
then orders the events into complete interactions by using 
time stamps collected by the probes. During training 
sessions, developers “record” the required scenarios (such 
as “buy a book”) by going through the required steps in 
the system while an interaction recorder [5] obtains and 
stores the generated data. They can then visualise the 
interactions in automatically generated UML sequence 
diagrams. This approach has the advantage that the 
recorded interactions directly mirror business scenarios in 
the system and so the monitoring adaptation process can 
be based on the system design and has good chances of 
indicating the meaningful context for potential problems. 
To overcome clock synchronisation and precision issues 
in multi-node heterogeneous environments or even on 
locally deployed applications, the interaction recorder 
instructs the probes to induce a custom artificial delay 
into the target methods, thus guaranteeing the order of the 
received event. This approach has two main 
disadvantages: interactions can only be recorded during 
training sessions in “clean” environments where 
developers have total control of the system; and the 
process does not support multiple concurrent interactions.  

A second approach solves these issues by intrusively 
instrumenting the application server container. It is based 
on the fact that all client requests to instances of an EJB 
go through the container that manages that EJB. 
Containers can thus be modified to intercept such requests 
and extract information on the initiator and targeted 
component of each request. A proof-of-concept 
implementation was devised for the JBoss application 
server; for any client-to-EJB interaction, the modified 
server is able to extract the client method, client instance, 
EJB method and EJB instance for that interaction. The 
main advantage of this approach over the non-intrusive 
approach is its capability of deterministically identifying 
the initiator of a certain method call, even in the presence 
of multiple simultaneous clients for that method. In 
addition, as information is being obtained dynamically 
(i.e. as calls are being made) runtime changes in the way 
components interact (e.g. due to dynamic inter-
component bindings) can be detected. However, since the 
approach is intrusive in the sense that the application 
server container needs to be modified, a separate 
implementation is needed for each particular server 
considered.  

The component activation functionality of the 
application adaptation module has been implemented and 
tested on the JBoss application server. When using the 
EJB technology, a client may only access an EJB 
component through the methods defined in the bean’s 
interfaces (i.e. home and remote/local interfaces). These 

interfaces constitute the client’s view of the bean. This 
implies that clients are completely unaware of the bean 
details behind these interfaces (e.g. method 
implementations provided by the bean class, or 
deployment descriptor configurations). A deployment 
descriptor XML document provides information on the 
deployment characteristics of a component (i.e. the 
interfaces and bean class to be used, container and 
database configurations). The adopted component 
activation approach is based on modifying deployment 
descriptor configurations, at runtime. This approach 
requires the target application server to support hot-
deployment. To enable component adaptation, multiple 
redundant bean class and/or container configuration 
variants are made available at runtime. Dynamic 
modifications of the enterprise bean class and/or 
container configuration information in the deployment 
descriptor (for a certain component) causes method 
implementations used and/or container provided services 
to accordingly change (for that component) at runtime. 
With this approach, clients using a component remain 
unaware of variant replacement actions on that 
component, as the external view of the component does 
not change. 

With respect to the evaluation and decision 
functionality of the adaptation module, an expected 
scenario is one in which a human manager initially 
performs such tasks, assisted by the automated 
monitoring and diagnosis facilities provided; the 
automatic component activation functionality is used to 
consequently enforce adaptation decisions. In a 
succeeding phase, based on repeated observations and 
data analysis, basic decision policies are specified; the 
adaptation module uses these policies to automatically 
suggest or take simple decisions, in common, clearly 
understood situations. More complex policies are 
incrementally added in time, enabling the adaptation 
module to automatically deal with more complicated, 
unpredictable conditions. The learning process of the 
adaptation module can be performed by a human 
manager, based on the manager’s observations and 
expertise, or by the actual adaptation module (supervised 
by the human manager), based on automated data analysis 
and policy specification processes. As future work, basic 
decision policies will be tested and analysed in simple 
scenarios; decision complexity will be added 
incrementally, as more complicated scenarios are 
considered. In a subsequent phase, automated learning 
mechanisms for the adaptation module will be devised. 

6. Related Work 

To the best of our knowledge, there are no similar 
frameworks that employ adaptive monitoring and 



adaptation for applications based on contextual 
composition frameworks [1], at the component level. 

General frameworks for self-adaptive systems are 
presented in [10] and [11], featuring inter-related 
monitoring, analysis and adaptation tiers. Our framework 
aligns with these frameworks, while specifically targeting 
enterprise applications based on contextual composition 
middleware [1]. The monitoring, interaction recording 
and application adaptation elements presented in this 
paper leverage the particular characteristics (e.g. 
availability of component metadata, container 
management of components) and address particular issues 
(e.g. dynamic inter-component binding, highly complex 
execution platforms) of such platforms. In addition, a key 
differentiator of our proposal is the use of decentralised 
techniques for the monitoring and adaptation modules, in 
which adaptive elements interoperate, the emergent 
behaviour facilitating increased scalability and flexibility. 

In [12], the authors focus on an adaptive monitoring 
infrastructure (JAMM) in a grid computing environment 
that can extract vital statistics such as CPU, network and 
memory for the running nodes in the cluster. Monitoring 
is started after detection of activity on some ports, by a 
port monitoring agent. There is no concept of software 
components or objects in JAMM, therefore no monitoring 
at method level or component level, as it is performed in 
COMPAS. In contrast, the COMPAS adaptation schemes 
do not rely on the detection of activity but rather on the 
detection of performance alerts. Additionally, JAMM 
does not use model information to optimize the 
monitoring overhead and it is mostly concerned with 
performance issues in the deployment architecture of a 
system (i.e. which nodes are performing badly and why) 
whereas COMPAS pinpoints performance issues in the 
software architecture of the system (i.e. which 
components are performing badly and in which execution 
context). 

Component redundancy-based adaptation techniques, 
such as presented in [2] are similar to our proposed 
application adaptation approach. The main features 
differentiating our application adaptation module from 
these approaches are the lack of requirements on 
component providers to supply accurate initial 
performance information for each variant, or replacement 
mechanisms for each pair of redundant variants. 

7. Conclusions 

Performance aspects in large enterprise systems are 
increasingly difficult to address statically at design time 
in part due to complex, unpredictable underlying 
middleware and in part due to changing conditions such 
as workload or resources driven by business evolution. 
This paper proposes a framework for monitoring and 

adapting component-based applications in order to 
maintain acceptable performance levels. Adaptive 
monitoring techniques are presented that enable low-
overhead continuous instrumentation of application 
components by automatically changing the 
instrumentation scope based on the current health of the 
system (occurrence of performance alerts). Corrective 
action based on evolving policies is subsequently taken 
by an application adaptation module which decides on the 
appropriate component variants to be used for the existing 
operating conditions.  

The framework has an open architecture allowing 
different strategies to be used for determining the cause of 
performance alerts, for specifying the adaptation policies 
or for processing the instrumentation data. Significant 
parts of the framework have been implemented for widely 
used J2EE application servers and work is in progress to 
finalise a complete prototype for several environments.  
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