
Automatic Performance Management in Component Based Software Systems

Ada Diaconescu1, Adrian Mos2, John Murphy3

Performance Engineering Laboratory
Dublin City University

{diacones,mosa,murphyj}@eeng.dcu.ie

1,2,3 The authors’ work is funded by Enterprise Ireland Informatics Research Initiative 2001, and supported by Iona Technologies and Sun Microsystems

Abstract

A framework for automatic performance tuning of
component-based enterprise applications is presented. A
non-intrusive monitoring and diagnosis module is
employed by an application adaptation module that
automatically chooses optimal component
implementations for different execution contexts. Both
modules can optimize their overhead by automatically
focusing on the application hot-spots, making the
framework suitable for long-running systems. Currently,
implementation work is targeted at J2EE systems.

1. Introduction

Large enterprise software systems increasingly depend
on component middleware platforms [1] such as J2EE,
CCM or .NET in order to reduce time to market and
increase modularity and reusability. Such applications
have a high degree of computational complexity which is
mostly due to two inter-related reasons: business logic
complexity and runtime platform complexity. Component
containers provide comprehensive lifecycle and systemic
services such as security and persistence which support
the developer-written business logic and simplify
development. The resulting complexity of the running
system is orders of magnitude higher than the complexity
of the business logic code alone, as the component
containers have a significant runtime footprint. Therefore,
the performance of such systems is difficult to predict and
optimise. In addition, the dynamic nature of component
frameworks (e.g. dynamic inter-component bindings,
component versioning) as well as runtime changes of the
execution context (e.g. incoming workload, available
resources) can render initial optimisations obsolete, as
different design and implementation strategies perform
optimally in different running contexts [2][3].

These factors contribute to highly unpredictable
system performance for which static performance
reasoning is often unfeasible. In contrast, a loosely-
controlled, self-managing, dynamic performance
optimisation methodology is ideally suited for long-
running systems where human intervention is less

desirable [4]. This paper presents a framework that
employs an adaptive approach to performance
management in component-based systems by integrating
low-overhead and non-intrusive monitoring with
application adaptation techniques. The framework targets
long-running enterprise systems and work is under way to
implement it for the J2EE platform.

2. Framework Overview

The presented framework (Figure 1) comprises two
main functional modules: i) monitoring and diagnosis and
ii) application adaptation.

Figure 1: Framework overview

The monitoring and diagnosis module is responsible
for acquiring run-time performance information on
software components, as well as on the software
application’s execution environment. In addition, it
analyses collected information and detects performance
hot-spots. This module, part of our COMPAS framework
[5][6][7], instruments software components (Enterprise
JavaBeans in the J2EE case) by augmenting them with a
proxy layer (Figure 1). The proxy layer is inserted in the
components upon a non-intrusive introspection process
that uses meta-data (e.g. deployment descriptors for
EJBs) to derive essential component structural
information. Monitoring data is therefore obtained at the
software component level, matching the abstractions used
during application development.

Application Server

Component-based application

Transparent
proxy layer

Performance Management Framework

Monitoring &
Diagnosis

Application
Adaptation

The application adaptation module is responsible for
solving the performance problems signalled by the
monitoring and diagnosis module. The solution proposed
for providing this functionality is based on the usage of
multiple, functionally equivalent component
implementations, each one optimised for a different
running context (e.g. incoming workload, available
resources). Application adaptation is performed by
selecting and activating the optimal component
implementation(s) in the current running context.

In the proposed framework, the two functional
modules operate in an automated, feedback-loop manner:
software components and their running environment are
monitored and performance problems identified; the
software application is optimised and adapted to meet its
high-level performance goals, in the current environment;
the resulting software application is subsequently
monitored and evaluated, optimisation and adaptation
strategies being possibly tuned in effect. Specialised
control logic is used to address the stability issues
possibly introduced by the feedback loop.

In order to avoid unnecessary performance overhead,
the monitoring and diagnosis module, as well as the
application adaptation module can automatically adapt at
runtime; the two modules can run in a standby state, with
minimum induced overhead, when the managed
application meets its performance requirements. They can
then automatically switch to an active state, in case
performance problems are being detected.

3. Adaptive Monitoring and Diagnosis

COMPAS [7] uses a proxy layer to instrument EJB
applications. Specifically, each EJB is enhanced with an
additional entity, the probe. Each probe captures
performance data related to method execution and
lifecycle events such as creation, activation or
passivation. A monitoring dispatcher is used as a central
management and control entity and it receives the
essential monitoring data from the probes. Such data is
displayed graphically in real-time charts showing the
evolution of response times and stored in log files for
detailed off-line analysis. Lifecycle events indicating
component container activity are presented, giving insight
into middleware behaviour (e.g. component creation
policies, instance caches) without the need for proprietary
and non-portable container-level hooks.

The monitoring dispatcher has an extensible and
pluggable event-based architecture, allowing third parties
to integrate proprietary event-handlers such as elaborate
performance analysis tools. The integration is realised via
standard interfaces which enforce the communication
protocol for receiving measurements and events from the
monitoring dispatcher. The graphical displays previously

mentioned constitute an example of such event-handlers
that use the standard extension interfaces.

In order to reduce the total monitoring overhead, the
use of adaptive monitoring techniques is proposed,
aiming at maintaining the minimum amount of
monitoring at any moment in time while still providing
enough data collection to identify performance
bottlenecks. Adaptive monitoring probes can be in two
main states: active monitoring and passive monitoring (or
stand-by monitoring). In the former, probes collect
performance metrics from their target components and
report the measurements to the monitoring dispatcher.
The second state defines the light-weight monitoring
capability of probes as it employs much less
communication overhead. When monitoring passively,
probes collect performance metrics and store them
locally. In this case, measurements are not sent to the
monitoring dispatcher unless a performance anomaly has
been detected, or the local storage capacity (the
monitoring buffer) has been depleted.

Two model-based probe management schemes for
enabling diagnosis and adaptation of the monitoring
process are presented: “Collaborative” (section 3.1) and
“Centralised” (section 3.2). Both use dynamic models of
the target EJB application.

In COMPAS terminology, a dynamic model (or model)
consists of the monitored components (EJBs) and the
dynamic relationships (interactions) between them. Each
interaction is a set of ordered method-calls through the
EJB system, corresponding to a business scenario such as
“buy a book” or “login”. The UML representation of an
interaction is a sequence diagram.

Models are essential to reducing the monitoring
overhead without the risk of missing performance hot-
spots in the system. If no models have been obtained for
an application, all components must be monitored in
order to identify a potential problem. In contrast, when
the interactions are known, it is sufficient to monitor top
level components for each interaction [6].

3.1. Collaborative Adaptation and Diagnosis

In the collaborative approach, probes have a high
degree of autonomy. They collaborate among themselves
to determine which component is causing particular
performance degradation. Additionally, they decide
which components need to be actively monitored and
which components can be monitored in stand by. The
monitoring dispatcher does not take any decision with
regard to switching probes into stand-by or active states.

3.1.1 Probes as Independent Collaborative Agents
Each probe has knowledge about the neighbouring

(upstream and downstream) probes. In relation to a Probe

X, upstream probes correspond to the EJBs which call the
EJB represented by Probe X. Downstream probes are the
probes corresponding to EJBs being called by the EJB
represented by Probe X.

The monitoring dispatcher is responsible for sending
vicinity information to all probes. This operation is
performed as new interactions are discovered or recorded.
The vicinity information is sent to already existing probes
(corresponding to existing EJB instances) as well as to
new probes as they are being created. Having the vicinity
information, probes can collaboratively infer the source of
performance degradation. A probe performs the following
steps (Figure 2) to discover the EJB where the problem
originates (diagnosis):

«start»
method is invoked

obtain
performance data

send data to
dispatcher

add data to
buffer

analyse data

[actively monitoring]

[not actively monitoring]

[no alert] «end»[buffer not full]

alert all
proxies

upstream

[performance non-linearity]

[downstream alerts]

alert dispatcher and
activate monitoring

[no alerts from downstream]

[alert is not caused by
downstream proxies]

dump buffer to
dispatcher

[buffer full]

[downstream alerts match
non-linearity]

Figure 2. UML Activity Diagram - Collaborative Diagnosis

1) Collects performance data when an EJB method is invoked.
2) If in active monitoring, sends performance data to dispatcher.
3) Adds performance data to its internal buffer.
4) Analyses the new buffer containing the new data.
5) If there are no performance anomalies (see section 3.3) and
the buffer is full, dumps buffer to the monitoring dispatcher for
storage and / or further analysis; activity ends.
6) Performance anomalies having been detected, alerts all the
probes upstream. The reason is that the probes upstream can
then take this notification into consideration, when deciding
whether or not the performance issue originates in one of them
or other probes downstream from them.
7) If other alerts from donstream have been received (by this
probe), it infers that its target EJB might not contribute to the

performance anomaly and activity jumps to step 8. Otherwise,
the only contributor to the anomaly is its target EJB. In this
case, it alerts the monitoring dispatcher of the performance
problem; dumps the local buffer to the dispatcher for storage
and further analysis; activity ends.
8) Since other probes downstream have exhibited performance
problems, it must be decided whether they are completely
responsible for the detected anomaly. The algorithm for taking
this decision can be as simple as computing the numeric sum of
the anomalies observed downstream and comparing it to the
anomaly observed at this probe. If they are equal within an
acceptable margin, it can be decided the probes downstream are
the only contributors to the performance issues. The algorithm
can be extended to include historical factors (section 3.3).
9) If the probes downstream are fully responsible for the
performance issue, activity ends.
10) If this probe has a contribution to the performance anomaly,
alerts the monitoring dispatcher and dumps its local buffer.

3.1.2 Emergent Alert Management and Generation
In the collaborative approach, probes decide

collaboratively which EJBs are responsible for
performance degradations. Information flow between
probes is essential to the decision making process.
Although numerous alerts may be raised by individual
probes (in a direct correspondence to the cardinality of
each interaction), only a reduced subset of the alerts are
actually transmitted to the monitoring dispatcher. In this
scheme, “false” alarms are automatically cancelled as
soon as the real origin of the performance degradation is
detected. The “real” performance hotspots thus emerge
from the running system due to the collaboration between
the probes.

3.2. Centralised Adaptation and Diagnosis

In the centralised scheme, probes have a smaller
degree of autonomy than in the collaborative scheme.
Probes send all the alerts to the monitoring dispatcher
which is responsible for filtering the alerts, finding
performance hot-spots and instructing probes to change
their states between active and stand-by.

3.2.1 Probes as Quasi-Independent Agents
Probes are not collaborative, instead they communicate

only with the monitoring dispatcher. As in the previous
scheme, each probe maintains a buffer with collected
performance data and has the capability to detect a
performance anomaly by performing data analysis on the
local buffer. Probes however do not have knowledge
about their neighbours and do not receive alert
notifications from downstream probes. Therefore, they do
not have the capability of discerning the source of the
performance issues and must report all locally observed
anomalies to the monitoring dispatcher.

A probe performs the following steps for detecting a
performance anomaly (see section 3.3):
1) Collects performance data when an EJB method is invoked.
2) If in active monitoring, sends performance data to dispatcher;
activity ends.
3) If in stand-by monitoring, adds performance data to the
internal buffer.
4) Analyses the buffer containing the new data.
5) If there are no performance anomalies and the buffer is full,
dumps buffer to the monitoring dispatcher for storage and / or
further analysis; activity ends.
6) If a performance anomaly has been detected alerts the
monitoring dispatcher of the performance problem; dumps the
local buffer to the dispatcher; activity ends.

3.2.2 Orchestrated Alert Management and
Generation

Using model knowledge (e.g. obtained by an
interaction recorder [5]) the monitoring dispatcher
analyses each alert putting it into its interaction context.
Upon receiving an alert from a probe, the dispatcher
performs the following steps:
1) Parses the interaction corresponding to the probe that has
generated the alert and identifies the downstream probes
2) Checks for any other alerts received from downstream probes
3) If there are no alerts from downstream, the dispatcher infers
that the performance anomaly originates in the EJB
corresponding to the probe that generated the alert. No other
EJBs downstream have exhibited a performance problem;
therefore the only contributor to the anomaly is the target EJB
of this probe; sends an alert to the appropriate listeners (e.g.
GUI); activates the probe that generated the alert; activity ends.
4) Since other probes downstream have exhibited performance
problems, it must be decided whether they are completely
responsible for the anomaly detected (see section 3.3) by this
probe. The algorithm for taking this decision can be similar to
the one adopted in collaborative (section 3.1.1, step 8).
5) If the probes downstream are fully responsible for the
performance issue, activity ends.
6) If the alerting probe has a significant contribution to the
performance degradation, sends an alert to the appropriate
listeners (e.g. GUI), activates the probe.

The main difference between the collaborative and the
centralised decision schemes lies in the degree of probe
independence mapping to CPU and bandwidth overhead
attributed to the probes and dispatcher; the advantages
and disadvantages of both schemes follow the effects of
this difference. In the former, more communication
occurs between the probes that also use more CPU and
this may not be applicable in highly distributed, low-cost
deployments. On the other hand, less communication
occurs between the probes and the dispatcher and less
processing takes place in the dispatcher; this allows
having a remote dispatcher running on a slow machine
with a poor network connection, possibly over the
Internet. The latter scheme is better suited for the opposite
scenario where EJBs are heavily distributed across nodes

and the dispatcher runs on a powerful machine connected
to the application cluster via high-speed network.

3.3. Detecting Anomalies – Discussion

Detailed techniques for raising performance alerts are
out of the scope of this paper. Rather, the process of
narrowing down the alerts to the responsible components
(the diagnosis process) is what is of interest and was
described in preceding sections. This chapter serves as a
discussion about possible means of identifying a potential
local performance anomaly from the information
observed at probe level, so that the reader can understand
the feasibility of the presented approach.

Let us consider an internal data buffer present in each
COMPAS probe, implementing a historical stack-like
structure of collected execution times for each method in
the target EJB of the probe. Each element of the method-
stack represents the performance data associated with a
recorded method-call event. In order to identify a
performance problem, a meaningful threshold must be
exceeded. The thresholds for a method can be of type:
• Absolute value X: at any time, the execution time t

for the method must not exceed X ms, where X is a
user-defined value.

• Relative: at any time, the execution time t for the
method must not exceed the nominal execution time
N of the method by more than a factor F times N,
where F is a user-defined value. Nominal execution
time is a loosely defined term here; it can denote the
execution time of a method in a warmed-up system
with a minimal workload for example.

• Random complexity: at any time, the execution time t
for the method must satisfy the relationship t ≤ f(k);
with f : {0, 1, 2, … n-1, n} Q, where
- k is the discrete event counter, increasing with
each method call, 0 ≤ k ≤ n
- n is the size of the buffer
- Q is the interval of acceptable performance
values (e.g. execution times)
- f is the custom “acceptable performance”
function mapping the current call (with index k) to an
acceptable performance value (e.g. execution time)
and it can be based on the previous history of the
method’s performance. Developers can write this
function and plug it in the alert detection framework.

The historical call data (the internal data buffer) in the
probes can be used to derive more complex associations
in regard to detected performance anomalies. For
instance, the monitoring dispatcher (which in case of
alerts receives the buffers from the probes regardless of
the adaptive management model) can correlate
performance anomalies from different probes and infer
causality relationships. In addition, it can correlate such

data with workload information in the system or database
information in order to make more complex associations.

4. Application Adaptation

The goal of the application adaptation module is to
overcome detected performance problems by
automatically optimising component-based applications
and adapting them to changes in their running
environment (e.g. workload, available resources), at
runtime. A solution for meeting this goal is proposed,
based on the following requirements: i) different design
and implementation strategies for software components
are available at runtime; ii) a mechanism is provided for
automatically alternating the usage of the available
strategies at runtime, as needed for reaching the high-
level goals of software applications. The following
subsections briefly present how each of these
requirements is being addressed.

4.1. Component redundancy

Component redundancy is a concept introduced for
addressing the former requirement. It is defined as the
presence, at runtime, of multiple component variants
providing identical or equivalent functionalities with
different design and implementation strategies. These
component variants are referred to as redundant
components. A set of redundant components providing an
equivalent functionality, or method, constitutes a
redundancy group (with respect to that functionality).
Any component variant in a certain redundancy group can
be functionally replaced with any other component
variant in the same redundancy group. However, each
variant is optimised for a different execution context.
Only one of the redundant components providing certain
functionality is assigned, at any moment in time, for
handling a client request for that functionality. The
selected variant is referred to as the active component
variant.

The component redundancy concept, as well as an
example scenario showing the potential benefits of the
component redundancy based approach, is presented in
more detail in [3], [8]. Test results from the example
implementation indicate that an informed alternation of
redundant components, each one optimised for a different
execution context, provides better overall performance
than either component alone could provide.

Acquiring multiple redundant components, might seem
to induce increased application development costs.
However, the overall cost of both building as well as
managing a system has to be considered, especially for
systems with long life-spans. A modular design, in which
the different strategies are placed into separate redundant

components, each optimised for a different running
context, is more flexible and easier to manage than a
monolithic design, in which a single component is used to
deal with all possible running contexts. Considering this,
the overall system costs could actually be smaller when
using the proposed modular approach for constructing
software applications than when using the current
monolithic approach. It is not required for multiple
redundant components to be available at runtime or
application deployment time [3]; they can be dynamically
added, updated or removed from the application, as
performance problems are detected or solved.

4.2. Adaptation mechanism

The adaptation mechanism addresses the second
requirement of the proposed adaptation solution. Its role
is to support and manage redundant components, and
capitalize on their redundancy for continuously adapting
and optimising applications in order to meet their
performance goals (e.g. response time, throughput). The
adaptation mechanism provides two main functionalities:
evaluation & decision and component activation.

The evaluation & decision functionality determines
which redundant component(s) to activate and when, in
order to optimise application performance. This
functionality requires: i) accumulating information on
components and their running environment; ii) processing
available information and determining the optimal
redundant component(s), in certain contexts. The two
requirements are presented next, followed by a
description of the component activation functionality.

Component information is obtained by means of
adaptive monitoring, at runtime (from individual probes
or central monitoring dispatcher; section 3). This
information is formally represented as a component
description, allowing the adaptation mechanism to
automatically interpret, analyse and update component
information. Component providers can optionally supply
initial component descriptions, at deployment time. An
initial description can indicate the implementation
strategy used or the running context for which a
component was optimised (e.g. increased workload and
available CPU). It can also provide relative values for
performance attributes (i.e. delay, throughput), and/or
their variation with environmental conditions (e.g. the
response time for a certain method increases
exponentially with the incoming workload on that
method). This sort of information can be acquired from
test results, estimations, or previous experience with
provided components. Initial descriptions are then
updated at runtime with accurate monitoring information
for the actual execution contexts. Thus it can be stated
that the adaptation mechanism ‘learns’ in time about the

performance characteristics of the software application it
has to manage. This includes knowledge on optimal
individual redundant components, as well as on optimal
combinations of redundant components from different
redundancy groups.

Decision policies are used to process the available
information (i.e. current monitoring data and component
descriptions) and take optimisation and adaptation
decisions. Decision policies are sets of rules, dictating the
actions to be taken in case certain conditions are satisfied.
They can be customised for each deployed application, in
order to serve the specific application goals (e.g.
requested performance attributes and their values) and
can be added, modified or deleted at runtime.

Two main approaches can be considered for
implementing the evaluation & decision functionality.
One approach is to evaluate all redundancy groups
involved in a certain interaction in a centralised manner
and select an optimal combination of component variants
(one variant from each redundancy group), so that the
overall performance of the considered interaction is
optimal [10]. The fact that a certain component can be
used in multiple, separate interactions, with different
performance requirements, also needs to be considered
when selecting optimal component variants to activate.
Expression optimisation techniques (e.g. relational
database query optimisation methodologies [9]), or
analytical analysis methods can be adopted when
considering this centralised approach. Nonetheless, when
considering large-scale component-based applications,
global optimisations may not always be needed.
Evaluating an overall application, potentially consisting
of hundreds of components, whenever an individual
component or a group of components does not meet
performance expectations, might induce unnecessary
overhead and not scale well. Therefore, a second
approach is to implement the evaluation & decision
functionality in a decentralised manner. In this approach,
if a problem is detected at an individual component level,
the problem is managed locally, by means of redundant
component replacement; only components exhibiting
performance problems are analysed and possibly affected
by such local optimisations. This approach is potentially
more scalable than the centralised one, as it avoids
repeated and possibly unnecessary optimisations of the
entire application. Nonetheless, exclusively concentrating
on local optimisations might lead to a non-optimal global
application. Also, certain problems such as deadlocks,
oscillating states or chain reactions, cannot be detected or
solved at an individual component level; a more high-
level view is needed to detect and solve such cases.

For these reasons, both the centralised and
decentralised approaches can be used, as needed. That is
adaptation mechanisms with different scopes (e.g. single

component, component group, or global application), can
be employed, organised in a hierarchal manner. In this
scenario, detected problems can be managed locally
and/or signalled vertically up to the global level. A clear
protocol is to be specified for allowing different
adaptation mechanisms to communicate. This approach
allows for local application problems (e.g. at component
level) to be solved locally, when possible, while also
supporting global optimisations, when necessary.
Adaptation mechanisms (at various hierarchical levels)
can be dynamically activated or deactivated, in order to
reduce overhead, while matching optimisation needs.

The component activation functionality dynamically
enforces optimisation decisions into the managed
application. This functionality involves activating the
redundant components indicated by the evaluation &
decision functionality as being optimal. A request
indirection mechanism is used for implementing the
component activation functionality. That is, incoming
client calls are directed to an instance of the active
component variant, upon arrival. When the active
component is changed, new incoming requests are
directed to instances of the new active component. State
transfer is not needed in this case, as client requests are
not transferred between instances of different
components; a particular interaction always finishes
execution with the component instances it started with.

5. Current Status and Future Work

The basic underlying monitoring infrastructure has
been largely implemented. It employs a completely
automated and portable installation procedure which can
take an existing J2EE application and insert the proxy
layer into each of its EJBs. The monitoring dispatcher can
currently receive and feed performance data into real-time
graphical consoles that display method-level events and
execution time evolution charts. The dispatcher uses basic
relative thresholds to indicate performance anomalies. In
addition, lifecycle characteristics such as instance creation
and deletion are displayed and all events are logged onto
physical storage. At this stage, probes can be activated
and deactivated manually and are designed to support
additional control mechanisms and custom alert
generation logic. The monitoring infrastructure has been
verified to work with several applications (ranging from
small sample ones to Sun Petstore or IBM Trade3)
deployed on IBM WebSphere, BEA Weblogic and JBoss.
Experimental results related to monitoring accuracy and
overhead in COMPAS are presented in [6]. Work is
underway to implement the two monitoring adaptation
and diagnosis schemes discussed. Execution models are
needed for the monitoring adaptation to work; two main
approaches towards implementing the interaction recorder

functionality were adopted and implemented.
The first approach uses non-intrusive probes to extract

method execution events from the running application. It
then orders the events into complete interactions by using
time stamps collected by the probes. During training
sessions, developers “record” the required scenarios (such
as “buy a book”) by going through the required steps in
the system while an interaction recorder [5] obtains and
stores the generated data. They can then visualise the
interactions in automatically generated UML sequence
diagrams. This approach has the advantage that the
recorded interactions directly mirror business scenarios in
the system and so the monitoring adaptation process can
be based on the system design and has good chances of
indicating the meaningful context for potential problems.
To overcome clock synchronisation and precision issues
in multi-node heterogeneous environments or even on
locally deployed applications, the interaction recorder
instructs the probes to induce a custom artificial delay
into the target methods, thus guaranteeing the order of the
received event. This approach has two main
disadvantages: interactions can only be recorded during
training sessions in “clean” environments where
developers have total control of the system; and the
process does not support multiple concurrent interactions.

A second approach solves these issues by intrusively
instrumenting the application server container. It is based
on the fact that all client requests to instances of an EJB
go through the container that manages that EJB.
Containers can thus be modified to intercept such requests
and extract information on the initiator and targeted
component of each request. A proof-of-concept
implementation was devised for the JBoss application
server; for any client-to-EJB interaction, the modified
server is able to extract the client method, client instance,
EJB method and EJB instance for that interaction. The
main advantage of this approach over the non-intrusive
approach is its capability of deterministically identifying
the initiator of a certain method call, even in the presence
of multiple simultaneous clients for that method. In
addition, as information is being obtained dynamically
(i.e. as calls are being made) runtime changes in the way
components interact (e.g. due to dynamic inter-
component bindings) can be detected. However, since the
approach is intrusive in the sense that the application
server container needs to be modified, a separate
implementation is needed for each particular server
considered.

The component activation functionality of the
application adaptation module has been implemented and
tested on the JBoss application server. When using the
EJB technology, a client may only access an EJB
component through the methods defined in the bean’s
interfaces (i.e. home and remote/local interfaces). These

interfaces constitute the client’s view of the bean. This
implies that clients are completely unaware of the bean
details behind these interfaces (e.g. method
implementations provided by the bean class, or
deployment descriptor configurations). A deployment
descriptor XML document provides information on the
deployment characteristics of a component (i.e. the
interfaces and bean class to be used, container and
database configurations). The adopted component
activation approach is based on modifying deployment
descriptor configurations, at runtime. This approach
requires the target application server to support hot-
deployment. To enable component adaptation, multiple
redundant bean class and/or container configuration
variants are made available at runtime. Dynamic
modifications of the enterprise bean class and/or
container configuration information in the deployment
descriptor (for a certain component) causes method
implementations used and/or container provided services
to accordingly change (for that component) at runtime.
With this approach, clients using a component remain
unaware of variant replacement actions on that
component, as the external view of the component does
not change.

With respect to the evaluation and decision
functionality of the adaptation module, an expected
scenario is one in which a human manager initially
performs such tasks, assisted by the automated
monitoring and diagnosis facilities provided; the
automatic component activation functionality is used to
consequently enforce adaptation decisions. In a
succeeding phase, based on repeated observations and
data analysis, basic decision policies are specified; the
adaptation module uses these policies to automatically
suggest or take simple decisions, in common, clearly
understood situations. More complex policies are
incrementally added in time, enabling the adaptation
module to automatically deal with more complicated,
unpredictable conditions. The learning process of the
adaptation module can be performed by a human
manager, based on the manager’s observations and
expertise, or by the actual adaptation module (supervised
by the human manager), based on automated data analysis
and policy specification processes. As future work, basic
decision policies will be tested and analysed in simple
scenarios; decision complexity will be added
incrementally, as more complicated scenarios are
considered. In a subsequent phase, automated learning
mechanisms for the adaptation module will be devised.

6. Related Work

To the best of our knowledge, there are no similar
frameworks that employ adaptive monitoring and

adaptation for applications based on contextual
composition frameworks [1], at the component level.

General frameworks for self-adaptive systems are
presented in [10] and [11], featuring inter-related
monitoring, analysis and adaptation tiers. Our framework
aligns with these frameworks, while specifically targeting
enterprise applications based on contextual composition
middleware [1]. The monitoring, interaction recording
and application adaptation elements presented in this
paper leverage the particular characteristics (e.g.
availability of component metadata, container
management of components) and address particular issues
(e.g. dynamic inter-component binding, highly complex
execution platforms) of such platforms. In addition, a key
differentiator of our proposal is the use of decentralised
techniques for the monitoring and adaptation modules, in
which adaptive elements interoperate, the emergent
behaviour facilitating increased scalability and flexibility.

In [12], the authors focus on an adaptive monitoring
infrastructure (JAMM) in a grid computing environment
that can extract vital statistics such as CPU, network and
memory for the running nodes in the cluster. Monitoring
is started after detection of activity on some ports, by a
port monitoring agent. There is no concept of software
components or objects in JAMM, therefore no monitoring
at method level or component level, as it is performed in
COMPAS. In contrast, the COMPAS adaptation schemes
do not rely on the detection of activity but rather on the
detection of performance alerts. Additionally, JAMM
does not use model information to optimize the
monitoring overhead and it is mostly concerned with
performance issues in the deployment architecture of a
system (i.e. which nodes are performing badly and why)
whereas COMPAS pinpoints performance issues in the
software architecture of the system (i.e. which
components are performing badly and in which execution
context).

Component redundancy-based adaptation techniques,
such as presented in [2] are similar to our proposed
application adaptation approach. The main features
differentiating our application adaptation module from
these approaches are the lack of requirements on
component providers to supply accurate initial
performance information for each variant, or replacement
mechanisms for each pair of redundant variants.

7. Conclusions

Performance aspects in large enterprise systems are
increasingly difficult to address statically at design time
in part due to complex, unpredictable underlying
middleware and in part due to changing conditions such
as workload or resources driven by business evolution.
This paper proposes a framework for monitoring and

adapting component-based applications in order to
maintain acceptable performance levels. Adaptive
monitoring techniques are presented that enable low-
overhead continuous instrumentation of application
components by automatically changing the
instrumentation scope based on the current health of the
system (occurrence of performance alerts). Corrective
action based on evolving policies is subsequently taken
by an application adaptation module which decides on the
appropriate component variants to be used for the existing
operating conditions.

The framework has an open architecture allowing
different strategies to be used for determining the cause of
performance alerts, for specifying the adaptation policies
or for processing the instrumentation data. Significant
parts of the framework have been implemented for widely
used J2EE application servers and work is in progress to
finalise a complete prototype for several environments.

8. References

[1] C. Szyperski et al. Component Software: Beyond Object-
Oriented Programming, Addison-Wesley, November 2002
[2] Daniel M. Yellin, “Competitive algorithms for the dynamic
selection of component implementations”, IBM Systems
Journal, Vol. 42, no 1, 2003
[3] A. Diaconescu, J. Murphy, “A Framework for Using
Component Redundancy for Self-Optimising and Self-Healing
Component Based Systems”, WADS workshop, ICSE’03, Hilton
Portland, Oregon USA, May 3-10, 2003
[4] J. O. Kephart, D. M. Chess, “The Vision of Autonomic
Computing”, IEEE Computer, January 2003
[5] A. Mos, The COMPAS project: www.ejbperformance.org
[6] A. Mos, J. Murphy. Performance Management in
Component-Oriented Systems Using a Model Driven
Architecture™ Approach. In Proceedings of IEEE International
Enterprise Distributed Object Computing Conference EDOC,
Lausanne, Switzerland, September 2002.
[7] A. Mos. A Framework for Performance Management of
Component Based Distributed Applications. In the ACM Student
Research Competition Grand Finals (second place).
http://turing.acm.org/src/subpages/AdrianMos/compas.html
[8] A. Diaconescu, “A Framework for Using Component
Redundancy for Self-Adapting and Self-Optimising
Component-Based Enterprise Systems”, ACM Student Research
Competition (3rd place), OOPSLA’03, Anaheim, USA, Oct 2003
[9] Don Batory, “On the Reusability of Query Optimization
Algorithms”, Information Science 49, 1989, p. 177-202
[10] D. Garlan, S. Cheng, B. Schmerl, "Increasing System
Dependability through Architecture-based Self-repair", in
Architecting Dependable Systems, Springer-Verlag, 2003
[11] P. Oriezy et al., “An Architecture-Based Approach to Self-
Adaptive Software”, IEEE Intelligent Systems, May/June 1999.
[12] B. Tierney et al., “A Monitoring Sensor Management
System for Grid Environments”, International Symposium on
High Performance Distributed Computing, August 2000,
Pittsburgh, PA

http://www.ejbperformance.org/
http://turing.acm.org/src/subpages/AdrianMos/compas.html

	Introduction
	Framework Overview
	Adaptive Monitoring and Diagnosis
	Collaborative Adaptation and Diagnosis
	Probes as Independent Collaborative Agents
	Emergent Alert Management and Generation

	Centralised Adaptation and Diagnosis
	Probes as Quasi-Independent Agents
	Orchestrated Alert Management and Generation

	Detecting Anomalies – Discussion

	Application Adaptation
	Component redundancy
	Adaptation mechanism

	Current Status and Future Work
	Related Work
	Conclusions
	References

