
A Decentralized, Architecture-Based Framework
for Self-Growing Applications

Ada Diaconescu
LIG laboratory, University of Grenoble
F-38041, Grenoble cedex 9, France

+33 4 76 63 55 66

ada.diaconescu@imag.fr

Philippe Lalanda
LIG laboratory, University of Grenoble
F-38041, Grenoble cedex 9, France

+33 4 76 63 55 60

philippe.lalanda@imag.fr

ABSTRACT

In large-scale, distributed software systems, an important

management undertaking concerns the creation and runtime

modification of application instances. This short paper proposes

an autonomic framework that can produce and maintain coherent

and adaptable application instances, in volatile execution

environments. In the developed approach, decentralised, context-

aware instantiation logic interprets a static architectural model and

creates conforming instantiation solutions, customised for the

current requirements. A local framework prototype implementing

this approach was implemented based on a Service Oriented

Component technology. Experimental results based on a Home

Monitoring data-mediation scenario show the viability of the

proposed solution and of the decentralised framework.

Categories and Subject Descriptors

D.2.11 [Software Engineering]: Software Architectures –

Domain-specific architectures, Patterns (e.g., client/server,

pipeline, blackboard). D.2.13 [Software Engineering]: Reusable

Software – Domain engineering, Reuse models.

General Terms

Design, Management, Reliability

Keywords

Autonomic instance management, decentralised instantiation

logic, context-aware model interpretation, self-growing software.

1. INTRODUCTION
In large-scale, distributed software systems, an important

management undertaking concerns the creation and runtime

modification of application instances. In addition to the required

deployment, installation and configuration operations, extensive

administrative tasks involve determining the necessary types,

cardinalities, interconnections and locations of created instances.

During runtime, such administrative tasks must often be repeated

in order to maintain the coherence of application instances in

changing execution environments. For complex software systems,

determining correct instantiation solutions in a dependable, timely

manner can raise important management challenges.

Autonomic Computing can address this difficulty by introducing

specialised utilities for determining application instantiation

solutions and for performing the necessary operations for

implementing these solutions. Scalability, resilience,

dependability and adaptability are essential requirements for such

utilities. Existing approaches generally use an application

architectural model, interpreted by an automatic generator for

deploying and instantiating distributed applications (e.g. [1] or

[2]). Nonetheless, the available utilities are mostly centralised,

meaning that the overall model of the targeted application must be

available before the application can be instantiated and/or

modified. Such approaches ensure the accuracy of the application

management process but raise major difficulties when having to

scale with increasing system sizes and modification frequencies.

This short paper proposes a decentralised solution for the

autonomic creation and maintenance of coherent application

instances, running in fluctuating environments. In the presented

approach, context-aware instantiation logic automatically

interprets a static, abstract architectural model and produces

conforming application instances, customised for the current

execution conditions. This solution generates adapted application

instances, while the abstract architectural model and the

interpretation logic remain unchanged. The instantiation control

logic is decentralised, allowing the proposed solution to scale with

application sizes, to adapt to evolving execution environments and

to recover from the partial destruction of most of its parts. A

framework prototype following this solution was developed and

validated against a sample data-mediation application.

2. SOLUTION OVERVIEW
The proposed autonomic instantiation solution is based on two

main elements – a static architectural model and a context-aware

model interpreter [Figure 1]. The static architectural model

formally defines the application’s architectural constraints and

possible architectural variations. All application instances must

comply with the static application model. Namely, architectural

models define the types, interconnections and general constraints

that are common to all application instances. They do not describe

the runtime architecture of an executing application instance. This

means that an architectural model specifies neither the exact

runtime instances, nor their precise runtime interconnections and

platform assignations. A specific architectural model language is

employed for formalising model specifications.

The context-aware interpreter automatically analyses the model

and produces a compliant application instance, customised for the

current execution environment. The interpreter’s instantiation

logic is decentralised. Namely, the interpreter consists of multiple

Instance Managers, each one responsible for one application type.

Instance Managers have identical implementations, merely their

Copyright is held by the author/owner(s).

ICAC’09, June 15–19, 2009, Barcelona, Spain.
ACM 978-1-60558-564-2/09/06.

associated types differ. Each Instance Manager resolves a fraction

of the overall architectural model, by generating a partial

application instance corresponding to its type. The entire

application emerges from local collaborations between Instance

Managers that solve adjacent architectural fractions. That is, each

Instance Manager associated to a type finds or creates Instance

Managers that are associated to the connected types, according to

the architectural model. Once identified, neighbouring Instance

Managers bind to each other and generate matching connections

between their partial instance solutions. Based on this approach,

the overall application instance and its underlying management

support grow progressively from one or more primary Instance

Managers. At runtime, the same logic is used to detect changes in

application instances and to resolve potential inconsistencies.

Figure 1: Solution Overview

Figure 1 shows the main architectural layers necessary for putting

into practice the presented solution. Namely, the proposed

framework executes on a specific technological Platform, which

must be in place on all stations on which the targeted application

can be instantiated. The actual framework comprises Instance

Managers and Runtime Context entities. Instance Managers create

and administer Application Objects (i.e. application instance parts)

by following the constraints of a shared architectural model. The

Runtime Context, available on each Platform, supplies Instance

Managers with an up-to-date view of the local execution context

(e.g. existing instances and available platform resources).

3. DECENTRALIZED MECANISMS
The framework’s overall behaviour is based on a number of

simple, decentralized mechanisms, which ensure the correctness

and the coherence of the emerging application instances. These

processes are similar to the ones presented in biologically-inspired

engineering literature (e.g. [3] or [4]).

Event propagation: enables event diffusion over a certain scope,

where scopes can be defined in various ways (e.g. geographical or

network-specific location; distance from a source). This

mechanism provides the communication support on which most of

the other decentralised mechanisms are based.

Instance density detection: determines the number of

Application Objects of a certain type within a given scope.

Instance Managers signal the presence of associated Application

Objects via specific markers. Event propagation diffuses each

marker throughout the marker’s scope. Runtime Contexts

aggregate intercepted markers and calculate local instance

densities. Instance Managers adjust instance densities to current

conditions, while ensuring they conform to model constraints.

Competition for action: limits the number of Instance Managers

that can perform a certain action within a certain scope (e.g. create

or destroy instances of a type). Specifically, all Instance Managers

within the scope compete against each other by means of a

random countdown. The winning Instance Manager performs the

action and inhibits the other Instance Managers.

Self-replication and self-destruction: enable the creation and the

destruction of Instance Managers of an existing type. The goal is

to regulate the number of instances of each type, depending on the

current runtime context and on the imposed model constraints.

Activity desynchronization: prevents Instance Managers from

simultaneously resolving their local models and hence potentially

causing resource consumption peaks or overflows. This process

selects various waiting periods (random or context-based), which

precede the Instance Managers’ reactions to certain events.

Periodic model conformance verification: triggers the instance

creation and verification process at given intervals. This process is

important when the events signalling dynamic changes in the

application instance are lost (e.g. in an overloaded environment).

4. CURRENT AND FUTURE WORK
A framework prototype was implemented based on a Service

Oriented Component technology – iPOJO1, which is an OSGi2

extension developed in the Adele team and made available as an

Apache open-source project. The prototype was initially limited to

a single Platform, an associated local Runtime and a core set of

the decentralised mechanisms: local event propagation, density

detection, competition for action and activity desynchronization.

The current prototype was locally tested on a Home Monitoring

data-mediation application. Starting from a set of seed instances

(i.e. sensors for home resource consumption), the framework

initially generated a data-mediation hierarchy, conforming to a

given abstract architecture. Next, the framework extended the

existing hierarchy so as to integrate dynamically added sensors.

Finally, the framework recreated the hierarchy when the majority

of its nodes were accidentally destroyed. These initial results are

promising, as they indicate the viability of the adopted

architecture-based, decentralised approach.

Immediate extensions will focus on: implementing and testing

further decentralised mechanisms; adding support for distributed

Platforms; performing the actual Application Object instantiation

and binding operations (simulated in the current version); and

extending the current model specification language.

5. REFERENCES
[1] Lalanda, P., Bellissard, L. and Balter, R. 2006.

Asynchronous Mediation for Integrating Business and

Operational Processes. IEEE Internet Computing. Feb. 2006

[2] Sicard, S., Boyer, F. and Palma., N. D. 2008. Using

components for architecture-based management: the self-

repair case. Proceedings of the 30th International Conference

on Software Engineering (ICSE), pp 101–110, 2008.

[3] Nagpal, R. 2003. A Catalog of Biologically-inspired

Primitives for Engineering Self-Organisation. Workshop on

Engineering Self-organising Applications, Autonomous

Agents and Multiagents Systems Conference (AAMAS)

[4] Tempesti, G., Mange, D. and Stauffer, A. 1997. A Self-

Repairing Multiplexer-Based FPGA Inspired by Biological

Processes. Journal of Systems Architecture: the

EUROMICRO Journal, v.43 n.10, p.719-733, 1997

1 iPOJO Project: www.ipojo.org

2 OSGi Alliance: www.osgi.org

http://www.ipojo.org/

