
Creating complex, adaptable management strategies via theopportunistic
integration of decentralised management resources

Abstract

The ambitious goals of autonomic management require
complex, adaptable processing capabilities that prove ex-
tremely difficult to conceive and implement. This paper
proposes a solution for the opportunistic integration of
specialised autonomic management resources, so as to ob-
tain complex, adaptable management strategies. The paper
introduces an architecture that follows the proposed solution
and provides a reusable framework that implements this
architecture. The solution’s validity is indicated by exper-
imental results obtained by testing the framework prototype
on a sample home security application.

1. Introduction

While autonomic management solutions become criti-
cal for business success [6], the capabilities they must
exhibit make them difficult to conceive and implement
(e.g. [5], [3]). Available solutions generally focus whether
on addressing specific management concerns (e.g. runtime
monitoring, pattern recognition, or optimal configurations),
or for administering a certain application, running on a
given platform, with respect to a certain business goal.
Nonetheless, little reusable support is currently available for
integrating existing solutions and facilitating the develop-
ment of complete autonomic applications. We consider that
the progress of Autonomic Computing critically depends on
the ability to capitalise on existing results. Autonomic man-
agement functions are complex due to their ambitious goals.
Implementing autonomic management behaviours involve
multiple complicated tasks, at various abstraction levels.
These include collecting heterogeneous data, interpreting
information, diagnosing problems and providing solutions
while avoiding conflicting management plans. Additionally,
autonomic managers must adapt their administrative strate-
gies to react to changes in managed resources, accumulated
knowledge, running environments and business objectives.

Using traditional software development approach for ad-
dressing this problem leads to difficulty. This approach is
based on a centralised, top-down view of system conception
and design, where developers fully specify and control the
overall application behaviour (e.g. [11] or [4]). This view
raises difficulties when behaviours are laborious to under-
stand and define in a single specification. When autonomic

managers are required to react to unpredictable scenarios,the
space of detectable conditions and desirable decisions grows
exponentially. Predict all possible situations and provide all
necessary solutions in a manager’s logic is difficult.

A much less exploited approach, advocated in this paper,
is to build complex strategies from simpler, specialised com-
ponents that dynamically collaborate to solve complicated,
possibly unexpected problems. In this view, specialised
management resources(MRs) are dynamically identified
and assembled for detecting and solving diverse adminis-
trative challenges. Available MRscollaborates opportunis-
tically depending on the current situation, requirements and
available information during runtime. A precise, exhaustive
specification of monitoring, analysis, planning and execution
directives is no longer required. An architecture following
this approach has been presented in our previous work [3].
It allows different management concerns to be implemented
in isolation by providing mechanisms to develop, compose
opportunistically and manage the lifecyle of reusable MRs.

The current publication refines the associated concepts
and definitions and brings several notable extensions that
became necessary at the architectural level. A conflict res-
olution mechanism for dealing with alternative or diverging
management resources is introduced. The presented experi-
mental results show how the extended framework prototype
was able to handle more complicated management scenarios
on a realistic sample application. In addition, important
scaling concerns and a hierarchical organisation of MRs for
addressing related challenges are discussed.

2. Proposed solution and general architecture

The architecture aims at obtaining complex, adapted
management strategies via the collaboration management
resources (MRs). Complex management strategies are devel-
oped from simpler tasks (monitoring a parameter, detecting
a problem type, planning a specific solution), separately per-
formed by individual MRs. MRs’integration is opportunistic:
determined during runtime, depending on the context (con-
ditions and requirements). Integration involves the separate
concerns of collaboration, communication and control.

The architecture was divided into two layers [Figure 1].
First, theResource Management layerconsists of the avail-
able management resources and of the shared communi-
cation channel. Second, aManagement Adaptation layer



Figure 1. Proposed architecture overview

supervises and reconfigures the Resource Management layer.
At present, the Management Adaptation layer observes ac-
tive MRs in the Resource Management layer and changes
their combination. For example, a MR identified as faulty or
inefficient is dynamically replaced by an alternative manage-
ment resource by changing the corresponding subscriptions
to relevant topics. Additionally, the Management Adaptation
layer can be extended to dynamically search and retrieve
MRs from external repositories.

MR are specialised for processing certain data types. Input
data from the managed environment arrives into autonomic
managers via specialised monitoring MRs. No negotiation
or explicit collaboration protocol exists amongst MRs. The
focus of control of the application is determined by the acti-
vation of MRs in response to the available information. Data
is transmitted via a sharedcommunication channel[Fig-
ure 1]. Within this channel, data is organised intotopic of
interest (or topic) corresponding to a management concern
(e.g. problem type occurrence, a certain parameter value).
The communication channel uses a publish/subscribe model,
which delimits the area of interest of each management
resource. MRs subscribe to topics they can interpret and
publish their results to topics affected by the data types they
produce. They collaborate by reacting to each other’s results.

Alternative or redundant MR addressing the same man-
agement concern might be activated at the same time. For
example, multiple planning resources may be introduced to
deal with the same problem type. Theconflict resolution
function assigned to the shared communication channel is
hence critical. The current conflict resolution method is
based on an inhibition mechanism : MR activation inhibits
the activation of conflicting MRs. Inhibition are charac-
terised by a priority (attached to communicated data) and
a validity period. It is planned to support more complicated
inhibition/activation mechanisms.

Manager are administrable : configurations can be set
by system administrators and/or other managers, whether
initially, or during runtime. Principal settings are the inhi-
bition parameters and the publish/subscribe configurations

that associate management resources to relevant topics.
The strengths of the architecture stem from its high

modularity, loose-coupling, separation of concerns and op-
portunistic control. Implementing specialized tasks as MRs
facilitates development and encourages reuse. MRs com-
municates via a loosely-coupled publish/subscribe model
enabling seamless evolution of management logic by re-
fining the set of active MR at runtime. MRs collaboration
is separated from their implementation reducing the cost
of autonomic management behaviour modification. These
features endow the architecture with great flexibility, which
renders it highly adaptable, extensible and robust. Iterations
are possible before finding a configuration that leads to the
desired behaviour. Such procedures would be difficult and
costly to perform in a more rigid architectural setting.

3. framework architecture

3.1. Framework Overview

A concrete framework prototype that follows the pro-
posed architecture was developed and validated via several
management scenarios on an actual application. It shows a
manner of assigning administrative tasks to MRs, realising
the communication channel and organising exchanged data
types into topics of interest. As previously indicated, the
framework architecture is divided into two main layers.
More details on the roles and functions of the two layers are
available from [3]. The following subsections detail some of
the most important aspects of the framework design.

3.2. Topic-based Collaboration

In the Resource Management layer, management concerns
are grouped into classes (e.g. monitoring, analysis, planning
and execution). Data transmitted via the communication
channel is routed via corresponding topics, further organised
into specific sub-topics. Exchanged data is characterized by
generic meta-information (e.g. unique identifier, producer’s
identity or processing time [3]) and topic/producer special-
ized information(e.g. CPU value produced by CPU monitor).
The communication channel maps incoming data to affected
topics and maintains a list of management resources that are
”interested” in receiving data from that topic.

Building a MAPE ([6]) manager could be done as fol-
lows. MRs specialised in resource supervision monitor the
managed system and its execution environment, enabling
the manager to stay up-to-date. Monitoring MRs publish
collected data via corresponding monitoring topics (or sub-
topics). Subsequently, MRs specialised in data analysis are
automatically activated by the arrival of monitoring update-
sAnalysis resources detect current problems and publish
them to relevant topics. Planning resources are automatically
activated by the occurrence of new problem specifications.



Plans are made available via specific execution topics.
Finally, execution MRs are activated for performing the
necessary actions on the affected managed resources.

3.3. Communication Channel

The communication channel ensures the dynamic integra-
tion of MRs and the conflict resolution. It currently uses
three mapping tables for distributing data to MRs. First,
a Topic Mapping Tabledefines classical publish/subscribe
topic subscription.Second, aConflict Mapping Tableidenti-
fies conflicting MRs for each MR. An expiration duration
states the time MR should be inhibited when its conflicting
counterpart is activated. Finally, anInhibition Status Table
shows the inhibition status of each MR. When a MR is
inhibited, priority and expiration time is reported in the table.
More than one inhibition may concurrently exist for a single
MR entry when different MRs place inhibitors with over-
lapping periods. (the highest priority is considered at each)
Mapping tables are initially set by system administrators and
refined by Adaptation Layer at runtime.

The channel uses the Topic Mapping Table to determine
the MRs affected by topics. For each of these MRs, the
channel uses the Inhibition Status Table to verify whether
subscribing MRs are blocked. If the MR is blocked, the
priority of the incoming data is compared with the priority
of the blocked resource inhibitions. If the incoming data
has a higher priority, the inhibition is ignored. Otherwise,
the affected MR is discounted. The conflicting resources are
blocked, in accordance with the Conflict Mapping Table.

Incoming Data is synchronized with respect to a prede-
fined clock : the communication channel collects all incom-
ing data during a predefined period. Collected data relevant
to a topic is aggregated into a separate data set, which is
sent to the affected MRs at the end of each period. It ensures
that MRs receive enough data to perform their tasks. Various
possibilities deserve further study and tradeoffs evaluation.

3.4. Scaling Extentions

Implementing the communication channel in a centralised
fashion would rapidly cause scaling difficulties. As the num-
bers of MRs and topics grow, the communication channel
would encounter increasing difficulties in finding the correct
entries in the corresponding mapping tables. In addition, this
process would be inefficient, since certain MR would be
used more frequently than others and as certain resource
pairs would seldom, if ever collaborate. Finally, the Adap-
tation layer would equally present scaling problems when
observing and modifying large numbers of MRs and topics.

The architecture was extended to support a hierarchical
organisation. MRs are grouped into specialised categories,
which are hierarchically organised and identified. Categories
and subcategories are related to the data types that MRs can

process. For example, different categories can be specified
for monitoring, analysis, planning and execution MRs. If
the number of monitoring MRs increases, further subcate-
gories can correspond to: all monitoring MRs that extract
information on hardware (e.g. memory, CPU and disk),or
on software components (e.g. number of instances).

MRs can beSimpleor Composite. Simple MRs implement
actual administrative tasks. Composite MR contain their own
communication channel and their own set of MRs (Simple
and/or Composite). MRs collaborate in the same manner
described before. The communication load is distributed
among multiple communication channels. As before, MRs
return their results to the communication channel they are
attached to. The implemented procedure is similar to that
of packet routing in IP networks. First, the channel uses the
data type prefix to determine whether or not the incoming
data affects its own category of MRs. If it does, the channel
uses its mapping tables to activate the MRs. Otherwise, data
is forwarded to a default channel (e.g. equal or superior).

3.5. Dynamic Adaptation

The Management Adaptation process aims at optimising
the administrative behaviour of the Resource Management
layer. It uses the current high-level goals and the behaviour
of active MRs to dynamically reconfigure the Resource layer.
It intervene for recovering from an erroneous situation : it
may observe that an active MR fails to reach a conclusion
and decide to replace it.

The Management Adaptation layer is designed to follow
the hierarchical organisation of the Resource Management
layer (Composite MRs). The abstraction level of each Man-
agement Adaptation instance corresponds to its position in
the hierarchy. At the very top, an instance coordinates the
actions of lower-level instances and ensures communication
with the external environment. More details on the Manage-
ment Adaptation layer are available from [3].

3.6. framework implementation

A prototype of the presented framework was imple-
mented following a Service Oriented Component (SOC)
approach [10]. This approach capitalises on the advan-
tages of both component and service-oriented paradigms.
The loose-coupling and the dynamic discovery character-
istics of SOC are indispensable to our architecture. The
large number of interconnected elements specific to the
framework requires the use of an efficient communication
infrastructure. This consideration renders Web services as
an unlikely candidate, due to their inherent communication
and processing costs. The iPOJO1 /OSGi2 Service Oriented

1. iPOJO Project: www.ipojo.org
2. OSGi Consortium: www.osgi.org



Figure 2. Experimental home security application

Component technology (Java implementation) was adopted
for developing the current prototype. iPOJO provides im-
portant OSGi extensions, including distributed communica-
tion, automatic and dynamic service discovery/binding, and
autonomic facilities [2]. Hence, each MR is implemented
as an iPOJO service component. The communication chan-
nel represents another, composite iPOJO service. MRs are
connected to the channel via dynamic iPOJO bindings. The
initial composition of a framework instance is specified viaa
special-purpose XML file (e.g. management resource types,
instances and initial mappings). Further framework design
and implementation details are available from [3].

4. Sample application and experimental results

4.1. Home Security Application

An experimental application was used for validating the
framework prototype. The application was implemented
based on our team’s experience with the ANSO3 Project. It
supervises a home and notify a security company when an
intrusion is detected. The implementation follows the design
depicted in figure 2. Several video cameras are employed for
capturing images from different rooms. They communicate
with the application via specific drivers. Images are sent
to a motion-detector, which searches for differences that
may indicate movement. In parallel, images are sent to a
persistence service, which saves them to a local file system.
Guards notified by alarm may first analyse the available
images before intervening.

The application runs on a home gateway executing multi-
ple applications. The goal of the autonomic framework is to
ensure the functioning of the security application despite
fluctuating gateway resources. Hence,scenarios focus on
the video cameras and image storage service management,
depending on the current application state (i.e. normal or
alarm) and on the available disk and CPU resources.

3. ANSO ITEA Project: anso.vtt.fi

4.2. Framework Instantiation and Configuration

The framework instantiation consisted of four Composite
MRs - monitoring, analysis, planning and execution, linked
in a ”classic” control-loop. The monitoring Composite uses
three MRs observing the alarm service state, the CPU utili-
sation and the disk consumption levels. These MRs produce
data of types:monitor.alarm, monitor.CPUandmonitor.disk.

The analysis Composite uses four MRs for processing
monitored data. The first MR can detect presence or ab-
sence of alarm. The others detect the crossing of different
predefined thresholds by the consumptions of disk and
CPU. These thresholds MRs are instances of the same
implementation but configured with a different threshold
and activated by different topics. One is activated bymon-
itor.CPU with threshold set to 95% of the CPU capacity.
The other two analysers are activated bymonitor.diskdata
with thresholds set at 80% and 90% of the disk capacity.
The four analysis MRs produce results of different data
types and different priorities:analysis.alarm(priority 2) and
analysis.non-alarm(priority 4) - indicating presence/absence
of alarm;analysis.CPU(priority 3), analysis.disk1(priority
1) andanalysis.disk2(priority 1) - the crossing of thresholds.

The planning Composite contains four MRs. The
Cam Planner MR decides to switch on/off cameras located
in rooms with no access points, depending on the alarm
state. It is activated by theanalysis.alarmor analysis.non-
alarm topics and issuesplan.camera-onand plan.camera-
off. The StandardDiskPlanner MR, activated byanaly-
sis.disk1topic, decides to delete 40% of the stored image.

Alternatively, The AlarmDiskPlanner resource can be
activated byanalysis.alarm, analysis.disk1, or analysis.disk2
topic. Its decision depends on two possible data type
combinations. Whenanalysis.alarmandanalysis.disk1data
types occur simultaneously, the MR order registered im-
ages compression. However, when disk usage approaches
the maximum, the planner tries to save the most recent
images. Therefore, when activated by the concurrent occur-
rence ofanalysis.alarmand analysis.disk2data, the same
Alarm DiskPlanner decides to delete 40% of the oldest
image records. The AlarmDiskPlanner only proposes a disk
management action in case an alarm is present; this planner
remain inactive in the absence of an alarm . The default
inhibition state of the AlarmDiskPlanner was set to 2.
This enables data of typeanalysis.alarm(of priority 2) to
activate this MR. However, it preventsanalysis.disk1and
analysis.disk2(of priorities of 1) to activate this MR alone.
When an alarm activates AlarmDiskPlanner, the MR also
receives disk related data. Future works will extends the
communication to support logical expressions simplifying
these settings.

The last alternative is AlarmCPUDiskPlanner activated
by analysis.alarm, analysis.disk1, analysis.disk2or analy-
sis.CPU. It remains inactive as long as there is no CPU



overload, but once activated receive all data affecting its
decisions (i.e. CPU, disk and alarm). For this reason, this
planner’s default inhibition state was set to 3(priority of
analysis.CPU topic). When activated, this planner order
the deletion of one in three recorded images. This planner
preserve CPU consumption avoiding image compression
When second disk threshold is crossed, this MR orders the
deletion of 40% of images.

Some planning MR decision are conflicting. These con-
flict are managed by the aforementioned conflict tables.
The CamPlanner is not in conflict with any of the other
planners and never gets blocked. The three others planning
MR accordingly try to mutually inhibit each other, when-
ever active, using the maximum priorities of the data that
activated them. Based on the priorities of analysis data, the
AlarmCPU DiskPlanner can inhibit the AlarmDiskPlanner,
which can inhibit the StandardDiskPlanner. Four execution
MRs were necessary for the execution Composite for man-
aging cameras activation, deleting a certain quantity of old
images,erasing one image out of every given number, and
compressing recorded images.

4.3. Management Scenarios and Obtained Results

The fully implemented application works with real video
cameras. However, for better controlling the scenarios, ex-
perimental drivers simulate the existence of multiple cam-
eras. The results are displayed in Figure 3. The graph shows
the percentages of CPU and disk consumption, the starting
and stopping of alarms and the alternate activation of the
four execution MRs.

The starting and stopping of alarms was sensed by the
alarm monitoring MR and triggered the alarm analysis
MR. This MR producedanalysis.alarm(or analysis.non-
alarm) data which triggered the CamPlanner and resulted in
data of typesplan.alarm-on(or plan.alarm-off). The graph
shows the activation of the camera execution resource almost
superposed with the starting and stopping of application
alarms (e.g. at times 120s and 380s for starting; and 210s
and 460s for stopping). When more cameras are activated
(at 120s and 380s), the slope of the disk consumption curve
increases : more images are stored. When the alarm was off,
disk overloads were handled by the StandardDiskPlanner
ordering deletion (times 215s, 275s and 330s).

On alarm(analysis.alarm) and first disk threshold (analy-
sis.disk1),the Alarm DiskPlanner was activated. The planner
ordered compression activating the compression execution
MR. The activation of this execution resource occurred 5
times during the first alarm period, between 120s and 210s.
This strategy became less and less efficient as the sizes of
already compressed images could no longer be reduced. A
scenario in which in the Adaptation layer intervened to tune
the choice of the planning MR was presented in [3]. As the

30%

50%

70%

90%

100 150 200 250 300 350 400 450 

Disk1

Disk2
CPU

start stop start stop

D
is

k/
C

P
U

 U
sa

ge

T
hr

es
ho

ld
s

Time (s)

Alarm

CPU
Disk

Erase
EraseFQ

Compress
Cam

Figure 3. Disk management in a security application

compression increased CPU consumption, it was avoided
during CPU overloads (e.g. between 330s and 430s).

On alarm and second disk threshold (analysis.disk2) , the
Alarm DiskPlanner order deletion instead of compression.
This image deletion by execution MR is shown at the
approximate time of 180s. The same MR was activated at
time 410s, but this time ordered by AlarmCPUDiskPlanner.
This occurred when data of type analysis.alarm, analy-
sis.disk2 and analysis.cpu was simultaneously present in
the communication channel. However, when the disk con-
sumption was in-between the two thresholds (i.e. presence
of analysis.alarm, analysis.disk1 and analysis.cpu data), the
AlarmCPU DiskPlanner chose the selective image deletion
strategy instead, activating the corresponding executionMR
(plan.step-delete). This scenario occurs twice on the graph,
during the second alarm period, when the CPU threshold is
also crossed (i.e. at times 390s and 425s). The CPU overload
was induced by a processor-intensive application.

These results show how the proposed framework can
handle various administrative scenarios by dynamically cre-
ating management strategies from individual management
resources of various types. The flexibility of the adopted
solution allowed the seamless definition of behaviours for
handling diverse combinations of external conditions.

5. Related works

The importance of applying the service-oriented paradigm
to autonomic management applications is reflected by the
publication of specific Web services standards[7][8] shows
the advantages of standard interfaces for autonomic ele-
ments, as it allows the creation of autonomic applications
from services developed by multiple providers. The avail-
ability of such interfaces is vital for building adaptable auto-
nomic managers with dynamically interchangeable elements.

In the autonomic computing field, several projects have
started to develop generic architectures, engineering princi-
ples and execution platforms with reusable capabilities that
facilitate the creation of autonomic applications (e.g. IBM



Autonomic Computing Toolkit4, Autonomia5, AutoMate6,
BioNets7, Amorphous Computing8, Autonomic Networked
Systems9 or Recovery-Oriented Computing10).

Other research areas are concerned with the development
of automatic reasoning functions. Such areas include Arti-
ficial Intelligence, Robotics and Automated systems. Most
significantly, concepts related to Multi-Agent Systems (e.g.
[12]) and Blackboard architectures (e.g. [9] or [1]) seem
most tightly related to our approach. Nonetheless, in Multi-
Agent Systems, agents are autonomous entities capable of
identifying and of negotiating with peer agents in order
to form necessary collaborations. In our approach, collab-
orations emerge from the simple reactions of management
resources to the occurrence of data they can interpret.
This behaviour closely resembles that of the Blackboard
model and consequently features similar advantages and
difficulties. In contrast to agents, the autonomous capabilities
of MRs are quite reduced, with the channel providing basic
communication facilities.

6. Conclusion and future perspectives

This paper proposed a solution for building complex,
adaptable autonomic management applications via the op-
portunistic collaboration of decentralised management re-
sources. The associated architecture enables management
resources to form flexible, reactive collaborations by com-
municating data through a shared, topic-based channel.
Additionally, the architecture introduces a second autonomic
management layer, for dynamically adapting the collective
behaviour of management resources, based on previously
obtained results and on the priorities of current business
goals. The proposed architecture addresses scalability issues
by organising management resources into hierarchical cate-
gories. The framework’s autonomic management capabilities
were demonstrated in several administrative scenarios on
a realistic home application. Obtained results showed the
potential of the proposed approach to support the develop-
ment of complex, adaptable management behaviours via the
collaboration of specialised MRs.

Immediate research efforts will focus on iteratively as-
sessing, refining and extending the framework’s capabilities
on increasingly more complex management scenarios and

4. Autonomic Computing Toolkit (IBM developerworks): www.ibm.com/
developerworks/autonomic/overview.html

5. Autonomia (University of Arizona): www.ece.arizona.edu/∼hpdc/
projects/AUTONOMIA

6. AutoMate (Rutgers University): automate.rutgers.edu
7. The Bio-Networking Architecture (University of California Irvine):

netresearch.ics.uci.edu/bionet
8. Amorphous Computing: swiss.csail.mit.edu/projects/amorphous
9. Autonomic Networked Systems (ANS) (Imperial College): www.doc.

ic.ac.uk/∼asher/ubi/ansproj
10. Recovery Oriented Computing (ROC) project (Berkley and Stanford

Universities): roc.cs.berkeley.edu

applications. Some of the already identified extensions in-
clude support for logical operations in the communication
channel and for hierarchical organisations with Simple and
Composite management resources. In addition, future per-
spectives will target the development of the Management
Adaptation layer, with dynamic discovery and integration
of management resources (i.e. services) when available MR
prove insufficient for handling current challenges.

References

[1] D. D. Corkill. Blackboard systems.Artificial Intelligence
Expert, September 1991.

[2] A. Diaconescu, J. Bourcier, and C. Escoffier. Autonomic
ipojo: Towards self-managing middleware for ubiquitous sys-
tems.International Workshop on Social Aspects of Ubiquitous
Computing Environments (SAUCE), 2008.

[3] A. Diaconescu, Y. Maurel, and P. Lalanda. Autonomic
management via dynamic combinations of reusable strategies.
In Second International Conference on Autonomic Computing
and Communication Systems, Autonomics 2008, Turin, Italy,
September 23 - Sep 25 2008. ICST.

[4] D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and
P. Steenkiste. Rainbow: Architecture-based self-adaptation
with reusable infrastructure.Computer, 37(10):46–54, 2004.

[5] M. C. Huebscher and J. A. McCann. A survey of autonomic
computing—degrees, models, and applications.ACM Com-
put. Surv., 40(3):1–28, 2008.

[6] D. M. Kephart, Jeffrey O. et Chess. The vision of autonomic
computing.Computer, 36, 2003.

[7] H. Kreger and T. Studwell. Autonomic computing and
web services distributed management, 2005. www.ibm.com/
developerworks/autonomic/library/ac-architect/.

[8] B. Miller. The Standard way of autonomic computing,
2005. www-128.ibm.com/developerworks/autonomic/library/
ac-edge2/.

[9] H. P. Nii. Blackboard systems, part one: The blackboard
model of problem solving and the evolution of blackboard
architectures.AI Magazine 7(2), pages 38–53, 1986.

[10] M. P. Papazoglou and D. Georgakopoulos. Service Oriented
Computing.Communications of the ACM, 46:25–28, October
2003.

[11] S. Sicard, F. Boyer, and N. D. Palma. Using components for
architecture-based management: the self-repair case.ICSE
’08: Proceedings of the 30th international conference on
Software engineering, pages 101–110, 2008.

[12] G. Tesauro, D. M. Chess, W. E. Walsh, R. Das, A. Segal,
I. Whalley, J. O. Kephart, and S. R. White. A multi-agent
systems approach to autonomic computing. InAAMAS ’04:
Proceedings of the Third International Joint Conference on
Autonomous Agents and Multiagent Systems, pages 464–471,
Washington, DC, USA, 2004. IEEE Computer Society.


