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Abstract. Distributed data-collection and synchronization is essential
in sensor networks and the Internet of Things (IoT), as well as for data-
replication in server farms, clusters and clouds. Generally, such systems
consist of a set of interconnected components, which cooperate and coor-
dinate to achieve a collective task, while acting locally and being failure-
prone. An important challenge is hence to define efficient and robust
algorithms for data collection and synchronisation in large-scale, dis-
tributed and failure-prone platforms. This paper studies the performance
and robustness of different multi-agent algorithms in complex networks
with different topologies (Lattice, Small-world, Community and Scale-
free) and different agent failure rates. Agents proceed from random loca-
tions and explore the network to collect local data hosted in each node.
Their exploration algorithm determines how fast they cover unexplored
nodes to collect new data, and how often they meet other agents to ex-
change complementary data and speed-up the process. Two exploration
algorithms are studied: one random and one using a stigmergy model
(that we propose). Experimental results show how network topologies
and agent failure-rates impact data-collection and synchronization, and
how a stigmergy-based approach can improve performance and success
rates across most scenarios. We believe these results offer key insights into
the suitability of various decentralised algorithms in different networked
environments, which are increasingly at the core of modern information
and communication technology (ICT) systems.

1 Introduction

Sensor networks, server farms and clouds consist of numerous components (e.g.
servers, processes, robots) interconnected via (complex) networks. They coop-
erate and coordinate their actions towards some overall objective, may share
common resources, and appear to an end-user as a single system [1]. An impor-
tant field of study here relates to how fast distributed processes, interconnected
via such complex networks, can achieve collective objectives (e.g. data collection,
synchronisation or processing); and how the particular topological properties of



complex networks impact such performance [2–5]. These aspects are key in se-
cure communications [4], logging and machine replication in databases [6]; and,
information-processing and consensus-making in sensor networks [7]. A particu-
lar challenge here represents data collection from a network’s components, both
as a stand-alone objective, e.g., in sensor networks, or as an underlying task
for data synchronisation. This paper focuses on decentralised data collection in
complex networks. Important challenges must be addressed here, as networked
components can only act locally and may fail unexpectedly.

Previous works [8,9] have studied data-collection techniques based on failure-
prone agents. Analysed approaches included Random walks, Lévy walks and
Stigmergy. Agents explored a targeted space based on selected algorithms, in
order to collect local information and share it with other agents (that they could
meet) [8]. [9] presents agents that collect information from distributed sources
and can fail and/or provide unreliable information defining collective informa-
tion as agregation of information that agents collect individually. [10] showed
how data-collection can be speeded-up by algorithms that favour exploration of
new paths and the exchange of new information with other agents. It also showed
how mechanisms that favour exploration and achieve faster data-collection are
more resistant to failure than those that focus on increasing inter-agent commu-
nication. Finally, it showed how stigmergy and pheromone evaporation can help
explore new paths, while also allowing to re-explore previous paths in order to
recover from failure-related data losses.

In this paper we study this data-collection problem within complex networks
(rather than within uniform spaces – studied previously). This is an important
difference, since the topology of the network explored has a significant impact
on the agents’ performance, as they explore, collect and exchange information
[11]. As before, agents may fail at different rates; yet we assume accurate data-
collection – i.e. when agents are available their information is reliable (as opposed
and complementary to [9]). We study two motion algorithms – random and
stigmergy. These are similar to the ones defined in [8]; as Lévy walks do not
apply to non-directional spaces, like networks. The objective is to analyse how
agent performance (i.e. how fast all network data is collected) and robustness
(i.e. how task completion is achieved in the face of agent failures) depend on the
adopted exploration technique, on the network topology and on failure rates.

The remaining of this paper is organized as follows. Section 2 presents the
data collection problem in complex networks; the studied network topologies;
and the agents’ design. Section 3 details the analysed motion algorithms, while
section 4 presents the experimental settings and discusses obtained results. Con-
clusions and future works are presented in section 5.

2 The Problem of Data-Collection in Complex Networks

The problem studied can be summarised as follows. Agents must explore a com-
plex network (simulated), in order to collect desired data present in the network
vertices. Agents move among interconnected vertices based on a predefined algo-



rithm (section 3), collect data from each visited vertex and exchange their data
with any agents that they meet at the same vertex. Additionally, agents can fail
over time with probability pf . The aim is to have at least one agent collect all
data from the entire network. The parameters of interest are the speed of task-
completion and the success rates in the presence of agent failures, depending on
network topologies, agent motion algorithms and failure probabilities.

The agents’ implementation is based on [10]. Each agent is equipped with a
set of perceptions p = {pheromone, data, current node, neighbors,msg}; where
pheromone is a vector in Rn with values in [0, 1], representing the amount of
pheromone in the agent’s vicinity (i.e. vertices adjacent to the current location)
[12]; data is the information to collect in the agent’s current vertex; neighbour
returns the ids of agents in the same vertex; msg stores messages from other
agents; and loc returns the agent’s location (vertex name). Each agent can also
perform a set of actions Actions = {Move(vertex), Collect, Send(msg), Recv};
where Move(vertex) moves the agent to the vertex location; Collect senses data
from the agent’s current location and stores it in its local memory; and Send
and Recv enable information exchanges with other agents.

Simulation time is defined via discrete rounds. In each round, each agent:
senses its local environment (e.g. local data, co-located agents and adjacent ver-
tices); decides on an action (e.g. collect and exchange data, select a neighbouring
vertex to move to); and performs the actual action [13,14]. The simulation ends
when at least one agent completes the exploration (i.e. collects all the data) or
if all the agents fail. The environment is the complex network to be explored.

In short, a complex network consists of a large number of interconnected
nodes characterized by non-trivial topological properties – i.e. neither purely
regular nor completely random; unlike lattices and random networks. Typi-
cal features include relative small distances between nodes, high clustering, or
power-law degree distributions (i.e. heavy-tailed) [2]. A more formal definition of
complex networks is quite difficult to provide; researchers have focused instead
on specific topological metrics and on the kinds of node interconnection rules
that produce topologies with distinctive properties [11].

In this paper, a complex network is defined as a graph G with a set of
vertices V and a set of edges E: G = (V,E). A probabilistic rule defines the
way in which vertices are interconnected when constructing the graph [2, 11].
Hence, complex networks with different topologies can be generated by using
different rules of inter-connection. In this paper we evaluate the main types of
network topologies identified in the literature, namely, Small-World, Scale-free
and Community networks (discussed below). We additionally use more regular
topologies for comparison, such as Forest Hub & Spoke, Lattice, Line and Circle.

2.1 Small-World Networks

A Small-World network is generated by starting from a regular network (in
terms of node interconnections) and then rewiring some of these connections
in a random way [15]. This type of network features relatively short paths be-
tween any network nodes, even in very large networks. In this paper, we use a



Watts-Strogatz model [3,16], with different parameters, to generate Small World
networks. We start with a regular ring lattice network with n vertices and k edges
per vertex, then rewire each edge with a probability β. The β parameter deter-
mines how regular the final network will be: β = 0 generates a regular network,
β = 1 a random network, and in-between values a Small-World network [15]
(Fig. 1).

Fig. 1. Small-World Networks: n = 100, k = 4, a) β = 0.3, b) β = 0.5, c) β = 0.9

2.2 Scale-free Networks

Scale-free networks are characterised by degree distributions that follow a math-
ematical function known as power-law [17]. The degree distribution is the prob-
ability distribution of the node degrees over the entire network [18]; where a
node’s degree is its number of links. A power-law distribution implies that node
degrees may differ by magnitudes of scale, and hence that a few nodes (called
hubs) have a disproportionate number of links compared to the average degrees.
Notable examples of real scale-free networks include the WWW, email or protein
interaction networks. They are highly resistant to accidental failures, but rather
vulnerable to targeted node attacks [19].

Scale-free networks can be obtained by starting with sn nodes and η connec-
tions. At each step a new node is added and connected via η links to existing
nodes, based on preferential attachment (i.e. more likely to connect to nodes
with higher degrees) [20]. Namely, the probability to connect to an existing node
is defined by pi = ki∑

j(kj)
, where ki is the degree of node i [16,21,22]. The process

is repeated for steps times [11]. Figure 2 depicts different configurations showing
how the number of connections increases with eta.

2.3 Community Networks

Community networks feature structures where nodes can be assigned to different
groups, or clusters, that are highly interconnected internally, and have relatively
few connections among nodes belonging to different groups [23]. In this paper
Community networks were generated using a n clusters parameter to define the



Fig. 2. Scale-free Networks: sn = 4, steps = 97, a) η = 1, b) η = 2, c) η = 4

number of groups in the network and adding a single connection between nodes
of different groups. Each group was generated as a small world network (with
its own k, β, and n = m/n clusters, where m is the number of nodes in the
network). Figure 3 shows a Community network with four groups connected
either via a central node (selected at random), or via a circle formed by pairs of
nodes selected from different groups (also random).

Fig. 3. a) Community Central, and b) Community Circle Network: n clusters = 4,
β = 0.5, degree = 4 and m = 100

2.4 Forest Hub & Spoke

The Forest Hub & Spoke network is based on the Hub & Spoke (or Star) con-
figuration, where all nodes are connected (spokes) around a central node (hub);
the forest is then formed by connecting pairs of such Star structures. This type
of network ensures high availability and reliable computing services because it
allows expansion of individual cloud instances [24]. In this paper, we generate 4
Hub & Spoke clusters of 25 nodes each, as shown in Figure 4.

2.5 Line, Circle and Lattice

Experimental design includes Lattice, Line and Circle topologies. The purpose
of performing experiments with these topologies is to test exploitation and ex-
ploration properties of the selected algorithms with a higher diameter (line), a
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Fig. 4. Forest Hub & Spoke

long path length (line and circle), and regular connections (lattice). Figure 5,
shows the configurations applied to the experiments each one with 100 nodes.

Fig. 5. Line, Circle and Lattice

3 Agent Motion Algorithms and Failures

After selecting different types of complex networks that represent various topolo-
gies, we aim to establish and profile how a determined motion strategy influences
the exploration of unvisited vertices, the encounter of other agents and robust-
ness given in terms of completing the task even when agents prone to failure; as
all of them are important for data collection.

Each agent implements an algorithm which determines how to sense data
from the environment and how to select actions such as motions and communi-
cation with other agents. The agent program pseudocode is listed in Algorithm
1. Agent failures are also defined in this program, and produced with a failure
probability pf – e.g., pf = 0.1 means the agent fails on average every 1 out of
10 rounds.

Based on perceptions, agents choose the next vertex to move to based on two
possible motion processes: random, which is exploratory; and pheromone-based,
which improves exploitation of new paths and agent encounters (which in turn
enhances collective exploration).
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Algorithm 1 Agent program
1: Percept p
2: Action action
3: round ← 0
4: while Agent.status 6= Fail do
5: λ← U [0, 1] . uniform random number
6: if λ < pf then
7: Agent.status← Fail
8: break
9: end if

10: p ← environment.sense()
11: Agent.move(motionAlgorithm(p))
12: if Agent.hasNeighbors(p.location) then Agent.exchange(p.neighbors)
13: end if
14: round ← round+1
15: end while

When following a random walk an agent selects its moving direction randomly
from the set of vertices adjacent to the current vertex, at each round. A uniformly
distributed pseudorandom generator is used for generating the random sequence.

When following a pheromone-based movement an agent chooses vertices based
on their pheromone load (e.g. in order to find unexplored vertices, or other
agents). This algorithm is based on the Ant Colony System algorithm (ACS) [25],
using stigmergy, and an adaptation of the Carriers algorithm in [10]. Initially,
all vertices have a pheromone value τv = 0.5. As in ACS [25], a random variable
q ∈ [0, 1] dictates when to apply an exploitation rule or biased exploration (Eq.
1):

dir =

{
exploitation rule if q ≤ 0.9

biased exploration otherwise
(1)

A carrier agent chooses the direction with the minimum pheromone amount
in its vicinity, looking for uncharted vertices. If more than one vertex has the
same minimum value a random direction is picked among these.

Biased exploration is a random-proportional rule [25] which gives an agent i a
probability of choosing a vertex pd(v) depending on the amount of pheromone τv
in its vicinity neighbourhood(i) (Eq. 2). neighbourhood(i) includes the vertices
connected to vertex i. This prevents agents from getting trapped in a confined
area (e.g. carriers surrounded by pheromone traces). For carriers τ ′v(v) = 1 −
τv(v).

pd(x, y) =
τ ′v(v)∑

(k)∈neighbourhood(i) τv(k)
(2)
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Whenever an agent i moves, at each rount t, it updates its internal pheromone
value τat

(i) (as in Eq 3) and also the pheromone amount in its current vertex
location τv(v) (as in Eq 4).

τat(i) = (τat−1(i) + 0.01 ∗ (0.5− τat−1(i))) (3)

τvt(v) = τvt−1
(v) + 0.01 ∗ (τat−1

(i)− τvt−1
(v)) (4)

If an agent i, finds or receives new information, then its internal pheromone
value is updated to τat

(i) = 1. In this case, Eq. 3 decreases internal pheromone
value at each round; and Eq. 4 increases the amount of pheromone in the loca-
tions that the carrier agent explores.

Passive evaporation is added so as to make explored paths less dominant and
allow re-exploration of routes of agents that fail without sharing information [26].
This type of evaporation is performed by the environment rather than by agents
and it is applied in all the vertices of the complex network G, using the definition
in [27] corresponding to Eq. 5, with evaporation rate ρ = 0.01:

τvi = (1− ρ)τvi(t−1)
, for

∀i ∈ {V,G = (V,E)}
(5)

4 Experiments and Results

Experiments aim to analyse the performance of motion algorithms to solve the
data-collection problem in complex networks. We apply metrics of speed, amount
of information collected versus time, robustness (in terms of failure resistance)
and number of messages sent. Additionally, experimental design provides insights
regarding impact of a selected complex network in the agents performance and
suitability of motion algorithms to achieve the data collection task in a deter-
mined topology.

4.1 Experimental settings

Each experiment is defined via a combination of: a different complex network
topology (section 2), a different agent motion algorithm (section 3), and a differ-
ent failure probability pf for all agents. In all cases, the network consist of 100
vertices and is explored by 10 agents (a relation 10 to 1 from vertex to agent).
Each experiment was performed 30 times. Agents start from random locations,
selected separately for each topology (but the same ones for all 30 repetitions in
any one topology). Each simulation stops when one agent collects all the infor-
mation from all network vertices, or if all the agents fail. We compare the per-
formance of the two movement algorithms (i.e. Random and Stigmergy-based)
within different topologies (listed below), and for different failure probabilities
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starting from zero and by increasing pf until a value in which most of the ex-
periments fail (pf = 0, 0.001, 0.003, 0.005 and 0.008). The specific parameters
used for each complex network topology studied are:

– Lattice: size 10× 10;
– Small World: degree 4 , β = 0.1, 0.3, 0.5, 0.9;
– Scale-free: number of steps steps = 97, starting nodes sn = 4, added links

per step η = 1, 2, 4;
– Community: β = 0.1, 0.3, 0.5, 0.9, n clusters = 4;
– Community Circle: β = 0.1, 0.3, 0.5, 0.9, n clusters = 4;
– Forest Hub & Spoke: n clusters = 4;
– Line: no specific parameters;
– Circle: no specific parameters.

4.2 Results and discussion

Agents are evaluated on different criteria in scenarios with and without agent
failure. When agents don’t fail (pf = 0) results are analysed terms of the agents’
performance – i.e. number of rounds before the first agent collects all the data.
Figure 6 depicts the round numbers for the two algorithms in different network
topologies. When agents don’t fail, all experiments are ultimately successful.
When agents do fail (pf > 0), the agents’ robustness is evaluated instead in
terms of success rates – i.e. how often the agents complete the task – and rate of
global data collection – i.e. how fast the agents collect the data together (rather
than individually). Finally, the number of messages exchanged among agents is
also evaluated, as critical in limited resource environments.

An ANOVA test is also performed for failure-less experiments, to determine
whether or not the observed differences between the round number means for
the two motion algorithms (Random and Carriers) are statistically significant.
The null and alternative hypothesis for a determined topology are the following:

– H0: round number means for the two algorithms are equal for a network G;
– H1: round number means for the two algorithms are different for a network

G, indicating a correlation between the algorithm and the round number.

Table 1 shows the ANOVA test results. The F-value represents the F statistics
– the variation between the round numbers of the two algorithms, in the given
network. The p-val and p-wilc indicate the statistical significance between the
results of the two algorithms for all the topologies (since p val < 0.05 and
p wilc < 0.05) except for the Community network with a β = 0.5 and clusters =
4 (where p val > 0.05 and p wilc > 0.05; marked as ∗ in Table 1).

Hence, based on the round number box-plots in Figure 6 and the ANOVA
test, we can conclude that Carriers are faster than Random agents for most
network topologies, when pf = 0. However, as observed in Figure 6 (and marked
as ? in Table 1), Random exploration is faster than the Carriers for the Forest
Hub-&-Spoke (Figure 6-e) and the Scale-free with sn = 4, η = 1, steps = 97
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Fig. 6. Box-plot of round number by some selected complex networks with pf = 0

Table 1. ANOVA and Wilcoxon Test for Carriers vs Random, by Topology

Topology F-value p-val Dif p-wilc

Line 111.75 3.806e−15 465 1.824e−6

Circle 248.28 2.2e−16 465 1.822e−6

Lattice 10× 10 75.996 2.2e−16 89.7 0.0257

Scale-free
(?)sn = 4 ,η = 1, steps = 97 91.807 1.476e−13 2.5 2.352e06
sn = 4 ,η = 2, steps = 97 69.922 1.52e−11 465 1.821e−6
sn = 4 ,η = 4, steps = 97 128.04 2.2e−11 465 1.822e−6

Forest Hub and Spoke
(?) clusters = 4 19.755 3.573e−5 36.5 1.355e−5

Community Network
β = 0.1, clusters = 4 47.382 3.952e−9 490 2.21e−6
β = 0.3, clusters = 4 46.56 5.797e−9 444.5 1.359e−5
(∗) β = 0.5, clusters = 4 2.304 0.1345 322.5 0.06561
β = 0.9, clusters = 4 18.228 6.84e−5 474 8.928e−5

Community Circle
β = 0.1, clusters = 4 152.07 2.2e−16 435 2.701e−6
β = 0.3, clusters = 4 144.48 2.2e−16 422.5 9.77e−6
β = 0.5, clusters = 4 93.448 1.07e−13 465 1.822e−16
β = 0.9, clusters = 4 121.477 7.472e−16 465 1.823e−6

Small World
β = 0.1, degree = 4 126.86 3.149e−16 465 1.821e−6
β = 0.3, degree = 4 65.385 4.394e−11 465 1.822e−6
β = 0.5, degree = 4 85.378 5.34e−13 465 1.823e−6
β = 0.9, degree = 4 144.64 2.2e−16 465 1.817e−6



networks (Figure 6-f). This is probably due to the fact that in these topologies
most paths pass through unique large hubs. Therefore, in the Carriers case, these
hubs are pheromone-marked very often and hence slow-down agent movement
across sub-networks.

We aim to quantify the topological features that impact agent performance.
Hence, we tried to identify a correlation between the round number and topo-
logical metrics like network diameter, degree distribution, clustering coefficient,
and betweenness centrality. We found that the two exception topologies (Scale-
free sn = 4, η = 1 and steps = 97 and Forest Hub-&-Spoke) feature greater
values for the standard deviation of the node betweenness centrality value –
stdev(betweenness) – compared to other topologies, as in Figure 6 e) and f).

To test this correlation, we generated more Scale-free network instances us-
ing the same parameters: sn = 4, η = 1 and steps = 97; and plotted their
log(round number) versus stdev(betweenness). Indeed, Figure 7-a shows the
correlation of the betweenness centrality and the round number for all topolo-
gies, including the additional Scale-free ones. Since most topologies have rel-
atively low betweenness values (lower than 0.025) compared to the Scale-free
cases (greater than 0.05), we only show these cases in Figure 7-b, for clarity, to
highlight that a correlation also exists for these topologies, even if at a differ-
ent scale. Figure 7-c shows the same correlation for the Random algorithm, for
all topologies; and Figure 7-d shows the correlation for both algorithms, for all
topologies. The Carriers algorithm seems to feature a stronger relation between
the round number and the betweenness centrality, compared to the Random
case, with greater betweenness values causing larger round numbers (i.e. lower
performance). For system designers, this means that selecting the best agent ex-
ploration algorithm depends on the network topology (betweenness centrality);
and the selected algorithm may have to change over time, for best performance,
as the network topology evolves.

We also evaluated the global information collected by all agents combined
(rather than by each agent). This is useful for analysing algorithm robustness
in case of agent failure, especially for applications where all agents can com-
municate data collected to a central location, and where a percentage of the
complete data suffices (e.g. 90%). Hence, the shape of the function describing
global information collected in time is important, with steeper shapes offering
better robustness, as data is collected faster, before agents start failing. Global
information is measured in each experiment (i.e. given topology, motion algo-
rithm and pf ) by reading the local information collected by each agent, at each
round, and calculating the total sum. Figure 8 presents the increase of the global
information with the round number for the Scale-free network (generated with
parameters sn = 4, η = 1 and steps = 97) for the two algorithms. Each ex-
periment is performed 30 times and the minimum, median and maximum values
plotted. Results show that global information is collected faster by Carriers than
Random agents – e.g. at round 50, the minimum collected by Carriers is about
90% whereas by Random is only 70%; at round 100, the minimum for Carriers
is 97% and for Random about 85%). It also seems that for Carriers the longest



Fig. 7. Correlating the betweenness centrality (std. dev.) to the round number (log)

time is spent for collecting the last 3% of the data, which causes the Carriers
to be slower than Random for collecting all data in this topology (Cf. Figure
7-d). This means that in applications where less than 97% of data collection
suffices (e.g. some sensor networks) the Carriers can outperform Random agents
even for such topologies. Finally, in all cases, the median values approximate the
maximum ones much faster for the Carriers than for Random (e.g. round 75 for
Carriers and not before round 125 for Random).

Let us now study the cases where agents can fail. Figure 9 provides a his-
togram of the success rates (a) and the box-plots of messages sent (b), for selected
topologies, and pf = 0.001. Figure 9-a shows that for the Carriers, the topolo-
gies most impacted by agent failures are the Scale-free (with sn = 4, η = 1
and steps = 97), where success rates drop to about 60%; and the Forest-Hub-
and-Spoke, to about 96.66%. For the Random algorithm, the only impacted
topologies are Circle and Line. By comparing these success rates with the round
number evaluations (Cf. Figure 7), we can note that faster data collection favours
success rates. Figure 9-b shows a higher number of message exchanges among
Random agents compared to Carriers. This could explain the lower success rates
for Carriers in topologies that infringe agent circulation (e.g. some Scale-free
cases), since agents are less likely to meet and their information is lost when
they fail.

Figure 10 shows the global information collected for the topologies most
impacted by agent failures (Scale-free and Circle). In both cases, the median



Fig. 8. Global information collected for Scale-free sn = 4, η = 1, steps = 97 and pf = 0

Fig. 9. Success rates and messages sent for pf = 0.001



reaches 100% faster for Carriers than for Random agents. Also, in the Scale
free case where success rates suffer, Carrier agents actually manage to collect
all the information together, yet they never meet to share the information and
hence no single agent completes. Random agents are slow to explore Line and
Circle networks as they move around the same vertices and share the same local
information. Hence, when they fail, their information is lost and other agents do
not reach the same areas before their own failures.

Fig. 10. Global information collected for Scale-free sn = 4 η = 1 and steps = 97 and
Circle, with pf = 0.001

Figure 11-a shows that for Carriers with pf = 0.003 the success rate for the
Forest-Hub-and-Spoke topology is further reduced, to 43%; and for Scale-free
(sn = 4, η = 1 and steps = 97) to 4%. Random agents also start featuring lower
success for this Scale-free topology (60%). Community networks start suffering
in the Random case, while not being impacted when Carriers are used. For Line
and Circle networks, Random exploration becomes severely impaired (less than
10%), while Carriers maintain 100% success rates. The success of both algorithms
remains intact (100%) for Small-world topologies.

Figure 11-b indicates that for the Community network Random agents ex-
change more messages than Carriers, even with less success rates, signifying that
they probably exchange redundant data. Figures 12-a and 12-b show a fast data
collection for Carriers, indicating that Carriers are better for exploitation of
new vertices in these networks, since they feature higher success rates despite
exchanging fewer messages. In the Forest Hub & Spoke network, agents exchange



Fig. 11. Success Rates and Messages Sent for pf = 0.003

more messages, via the hubs, and the median of global information converges
faster to maximum value for Carriers than for Random.

Figure 13 shows success rates for For pf = 0.005 in each kind of network,
for different generation parameters. Small World (13-a) and Community Circle
(13-c) feature the highest success rates compared to other topologies. Carriers
perform well in all Small World networks, whereas Random performs worse (yet
relatively better when Small Worlds are generated with higher beta values – less
regular and more random graphs) – Figure 13-a. Carriers also start to decrease
success rates in Community networks (Figures 13-b and 13-c), especially when
clusters are less regular (i.e. greater Beta values). Also, success in Community
networks is lower than in Community Circle, for both algorithms, since the
clusters are connected through a single central vertex, impeding movement.

For a pf = 0.008, only the Carriers manage to reach success rates of over
70%, for the most failure-resistant topologies: Lattice, Small World (all configu-
rations), Community Circle (all configurations) and Scale Free (4-4-97).

Additionally, a statistic test was performed for the Community network (β =
0.5) and a pf = 0.001, because there was not a statistically significant difference
in terms of round number for pf = 0, while the box-plot for the round number
does show a difference (Figure 14-a). By taking advantage of the 100% success
rates for both algorithms, a Wilcoxon test for round number and a pf = 0.001
indicated a p val = 0.0001538. This means that there is a significant difference
between the round number means, with Carriers being faster than Random,
when failures occur. For the other failure probabilities success rates decrease
faster for Random agents than for Carriers (Figure 14 b, c and d).



Fig. 12. Global Information Collected for Community Network β = 0.3 and Forest
Hub-and-Spoke, with pf = 0.003

Fig. 13. Success Rates For Complex Networks pf = 0.005



Fig. 14. Community Network Beta=0.5. a) Box-plot of round number with pf = 0.001,
b), c) and d) Success rates for pf = 0.003, 0.005 and 0.008 respectively

5 Conclusions and Future Work

In this paper we studied the problem of data-collection in complex networks
using failure-prone agents. We evaluated two agent motion algorithms (random
and a pheromone-based) for exploring complex networks with different topolo-
gies: Small-World, Scale-Free and Community Networks. We also studied sev-
eral regular network topologies for comparison purposes: Lattice, Forest Hub &
Spoke, Line and Circle. Experimental results showed that a pheromone-based
exploration technique improves the exploitation of new paths and results in
faster data-collection for most experiments in the different topologies. Results
also indicate a relation between network topology and data-collection perfor-
mance, where the differentiating factor among topologies can be quantified as
the variance of the betweenness centrality among nodes. Namely, the higher the
standard deviation of the betweenness centrality of nodes in a complex network,
the higher the completion times of the data-collection task in that network.

As shown in [10], the agents’ success in completing their collective task relies
critically on each agent’s motion process. This result was also confirmed here for
the case where the space was a complex network (rather than a uniform surface).
Also, a faster exploration algorithm provides better resistance to agent failure.

The Carriers strategy is also good for exploitation of new vertices and for
reducing the number of messages exchanged. Indeed, the median of the global
information collected (by all agents together) was approximated to 100% faster
than in the random case, in all the experiments. In the experiments where the
random approach was more successful (i.e. Scale-free topology generated with
sn = 4, η = 1 and steps = 97 parameters; and Forest Hub & Spoke topology) it
was difficult for the carrier agents to meet and exchange their local information
(as pheromone-marked hubs prevented circulation among sub-networks they in-
terconnected). However, on a global level, carrier agents collect information faster
than random agents in all scenarios (even with failures). Small-worlds, Commu-
nity Circle Networks, Lattice and Scale-free with a degree of 4 (4-4-97) are faster
than the other topologies for data collection, for both algorithms (random and
carriers), with the Small-world being the fastest topology.



Future work will study various network scales and agent population sizes,
and introduce node failures. The case where agents aim to synchronise different
data versions among network nodes will also be studied.We believe that obtained
results provide key information on the characteristics of different decentralised
data-collection algorithms, depending on their application context (e.g. network
topology and failure rates). This, in turn, allows system designers to select the
best option for their particular application and execution environment, covering
a broad spectrum of applications like sensor networks, swarm robotics, server
clusters, clouds, systems of systems and the Internet of Things (IoT).
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