
Self-Growing Applications from Abstract

Architectures.
An Application to Data-Mediation Systems

Ada Diaconescu

CNRS LTCI, Télécom ParisTech

Paris, France

ada.diaconescu @ telecom-paristech .fr

Philippe Lalanda

LIG laboratory, University of Grenoble

Grenoble, France

philippe.lalanda @ imag .fr

Abstract— Imagine a distributed mediation application

consisting of hundreds of thousands of interconnected nodes,

collecting data from millions of pervasive sensors, processing

data and delivering it to a myriad of business services. This

application takes the form of an acyclic, directed graph. Its

shape must continually adapt in response to changes in sensor

availability, network layout and business objectives. This

involves dynamically adding, configuring, migrating and

removing graph nodes. A centralised Observer/Controller, or

Autonomic Manager (AM), that controls lifecycle operations

for the entire graph would neither scale with the system’s size

and adaptation frequency, nor survive in unpredictable

environments. This paper proposes a decentralised solution for

enabling mediation applications to self-grow and to self-adapt

their shapes and behaviours. In this approach, applications can

autonomously grow into instances of a predefined, abstract

architectural model and continually adapt to their execution

conditions. A proof-of-concept prototype was developed using

a Java-based, Service Oriented Component technology –

iPOJO / OSGi. Experimental results from a Home Monitoring

data-mediation scenario show the applicability and viability of

our approach. We believe that the proposed framework will

enable applications to autonomously grow and survive in

volatile execution environments, over extended time periods.

Keywords - self-growing applications; decentralised control

and self-organisation; dynamic model interpretation; service-

oriented components; autonomic life-cycle management.

I. INTRODUCTION

Imagine a distributed mediation application consisting of
hundreds of thousands of interconnected nodes that collect
data from millions of pervasive sensors, process the data at
various abstraction levels and deliver it to a myriad of
business services. The application takes the form of an
acyclic, directed graph, which connects multiple data sources
to multiple data sinks [Figure 1]. Each graph node can
collect data from several sources (external sources or other
nodes), process data (based on a specific algorithm) and
deliver the result to several sinks (other nodes or external
sinks). In order to ensure service availability, such mediation
application must frequently change its shape and behaviour
when: data sources dynamically appear, change location or
disappear; the underlying distributed platform evolves; and

business services progress. Application modifications
include adding, migrating, updating and removing nodes, so
as to follow changes in data sources and sinks, incoming
loads, resource availability or data-processing requirements.

The lifecycle management operations required in these
scenarios involve deploying, instantiating, configuring,
migrating or removing software components (or services),
for each node involved. Automating such operations can
greatly improve the efficiency and dependability of system
administration procedures [1]. Typically, e.g. [2] - [4], a
central controller ensures the coordination of all management
operations by determining, implementing and adapting
global instantiation solutions for the entire distributed
system. Nonetheless, as the managed application’s scale and
required adaptation frequency increase, the reactivity of such
central controllers becomes progressively harder to maintain.
The problem of having a single point of failure must equally
be addressed for ensuring overall application survivability.

In contrast to such centralised, top-down approaches, a
different research community addresses this problem from a
decentralised, bottom-up perspective. Solutions in this
domain rely on decentralised self-organisation and
emergence principles. Typically, e.g. [5]-[10], independent
processes act and interact with each other locally, based on
simple programs and partial system views. No central
controller or global runtime system view exists. Global
behaviour or structure emerges from the local activities of
such decentralised processes. The major difficulty in these
approaches consists in guiding or controlling the
decentralised process. This problem can be reduced to
deriving the local behaviours and interactions that guarantee
the emergence of desired behaviours or structures.

 Figure 1: Mediation application

We address this challenge from a Software Engineering
(SE) perspective, introducing a solution that borrows
principles from both these domains. We propose CUBE, a
decentralised framework for self-growing and self-adapting
applications - i.e. lifecycle management. In this solution,
identical agents - or Autonomic Managers (AMs), replicate,
specialise, self-organise and self-destroy so as to create and
maintain a coherent application, adapted to varying contexts.
To address the aforementioned control difficulty, we bring in
an abstract architectural model for the overall application.
This model is replicated into all AMs; AMs specialise in
interpreting and expressing different model parts. Hence, the
abstract model constitutes a global objective and each AM
strives to attain a part of this objective. If local AM solutions
can be composed linearly then the model provides the means
of controlling the emerging application architecture.

In our solution, engineers merely specify the abstract
model that defines the targeted application. This model
defines architectural patterns, which authorise several
degrees of variation. The model is then injected in an initial
set of identical AMs (created by hand). Controlled by model
definitions and constrained by actual runtime conditions, the
initial AMs self-replicate, specialise, self-organise and self-
destroy so as to produce an application variant that conforms
to the engineer’s objectives. As in traditional SE, resulting
applications follow the “algorithmic division of labour”
concept. Yet, these applications are opportunistically built
and adapted via the dynamic composition of available
services. A CUBE prototype was implemented using a Java-
based Service Oriented Component technology – iPOJO /
OSGi. Initial results from a Home Monitoring mediation
scenario illustrate our solution’s applicability and viability.

The most significant contribution of this paper consists in
proposing a decentralised, architecture-based approach for
self-growing, self-organising and self-adapting service-based
applications. Our solution offers more flexibility and
survivability than centralised, top-down approaches and
better control and predictability than decentralised, bottom-
up initiatives. While our initial study and prototype focus on
data-mediation systems, the presented approach can most
likely be generalised for other application domains.

II. SOLUTION OVERVIEW

A. General Idea – a Living Systems Analogy

For addressing the lifecycle management challenge, we
searched for inspiration in existing complex adaptive
systems - e.g. living systems. Indeed, most living systems are
quite capable of autonomously growing and surviving in an
impressive range of unexpected environments. In living
systems, such as plants, an individual’s development starts
from a core element (e.g. a seed or a cell), containing a
model - or genome, and a bootstrapping mechanism. The
bootstrapping mechanism kicks-off the growth process by
“reading” the genome and producing the necessary elements
for duplicating the initial cell. Each cell contains a genome
replica and the corresponding interpretation machinery. The

process continues recursively and more cells are formed. In
the primary cell cluster, all cells are identical. As the growth
process progresses, cells start to differentiate into specialised
cells, based on their position in the existing organism.
Development unfolds concurrently from all existing cells,
each expressing different genome parts. External conditions
can influence growth and cause variation in individual sizes
and shapes – phenotypes. At the same time, individuals
developed from a certain genome conform more or less to
the type, or species, that genome represents. On the
resilience side, living entities can self-repair to a certain
extent by growing replacements of most destroyed parts.
These processes require no reliance on centralised control.
Hence, living systems provide excellent inspiration for
lifecycle management, as they can adapt within impressive
ranges and recover from unpredictable conditions, while
maintaining their conformance to predefined architectures.

We’re merely looking into natural systems for
inspiration, rather than attempting to faithfully replicate their
intricate underlying processes. From this perspective, we
have adopted the following nature-inspired concepts:

 Avoid central control in the instantiation and
adaptation process; communication and coordination
of decentralised parts (i.e. AMs) ensure overall
coherence (e.g. reaction diffusion processes [6]);

 Use a common abstract model, replicated from AM
to AM, to control the emerging result;

 Use identical AM implementations (one component);
AM instances, and hence their roles and functions,
differentiate based on dynamic configurations;

 Create and specialise AMs progressively and
concurrently, following the shared abstract model;

 Create and adapt partial instances, representing
different model parts, depending on local runtime
contexts (e.g. available instances and resources);

 Adapt partial instances to changes in their local
execution contexts and adjacent instance parts.

In this analogy, a CUBE abstract model represents the
genome equivalent and the resulting application instance the
phenotype counterpart. A CUBE AM, containing a full model
replica and a partial application instance, resembles a
specialised cell. In natural systems, a seed can be viewed as a
device for setting in place the progressive self-organisation
of nearby resources into a structured entity, representing an
individual of a certain species. Similarly, a CUBE AM can be
considered as a device for self-organising existing computing
resources (e.g. various software services and hardware
platforms) into an application of a predefined type.

B. Main Architectural Principles

CUBE’s architecture is based on two main elements: a
static, abstract architectural model; and a context-aware,
decentralised model interpreter [Figure 2]. The abstract
architectural model formally defines the application’s

architectural constraints and possible variations. Specifically,
architectural models define the Types, Interconnections and
general Constraints that are common to all application
instances (e.g. cardinalities, localisation or needed
resources). They do not describe the runtime architecture of
an executing application instance. This means that abstract
models do not specify the exact service implementations to
instantiate nor the exact runtime instances, interconnections
or platform assignments. The interpreter dynamically
decides upon these aspects instead. All application instances
must comply with their abstract models. Yet, abstract model
constructs enable several degrees of dynamic variation, via:

 Abstract Types, to be dynamically matched with
service implementations of that Type or Sub-Type.

 Architectural Variations (branches), which are
grouped under logical operators – e.g. and, or, xor.
The branches to instantiate are selected at runtime.

Figure 3 depicts a graphical representation of a sample
abstract model (a) and a few concrete instantiation solutions
(b, c, d). It is important to note that service instances for a
given Type (e.g. A, B, C or D) can be created from different
service implementations, from various providers.

The context-aware interpreter receives an abstract model
and produces compliant application instances, customised for
the current execution context. The interpreter’s instantiation
logic is decentralised, consisting of multiple independent
AMs. Each AM instantiates a model fraction of the entire
model and joins the resulting instance fraction to instance
fractions created by neighbouring AMs. AMs have identical
implementations. Yet, each AM differentiates into a specific
AM Type depending on the model fraction it must express –
the expressed model fraction. Each AM must create, connect
and adapt an instance fraction that matches the AM’s
expressed fraction. AM coordination relies on event-based
communication, where AMs only react to events concerning
their expressed fractions and neighbouring fractions. Based
on these principles, the application instance progressively
grows from adjacent fractions expressed by neighbouring
AMs. Figure 4 indicates how multiple AMs produce a full
application instance for the model exemplified in Figure 3-a.

C. Important Architectural Considerations

The presented solution raises several key concerns:

 Who, in turn, manages the AM lifecycles?

 How are architectural models split into fractions?

 How do independent AMs coordinate for ensuring
long-term application coherence and adaptability?

In the remaining of this subsection we discuss several
alternatives for addressing these issues.

1) AM Lifecycle Management
We propose that the AMs manage each other’s lifecycles.

Namely, each AM manages, and is being managed by,
neighbouring AMs. To a certain AM, neighbouring AMs are
those that manage model fractions that are adjacent to the
AM’s expressed fraction. Hence, each AM resolving a model
fraction finds, creates or repairs AMs that resolve adjacent

fractions. Neighbouring AMs bind to each other and generate
matching connections between their respective instance
fractions. In this manner, the overall application instance and
its management support grow progressively from one or
more primary AMs. At runtime, the same logic is applied to
detect and to repair neighbouring failed AMs or to re-
instantiate application fractions in new execution contexts.

2) Model Fragmentation and Activation
Fragment activation is tightly related to the model

fragmentation approach. We have so far identified four
realistic options and implemented one of them in our
prototype. First, one AM is instantiated on each distributed
system machine. Fragmentation is decided at runtime, as
follows. Upon creation, an AM starts to resolve the abstract
model starting from a given point and until it encounters a
model constraint (e.g. insufficient resources or instance
localisation restrictions). At that point, the AM delegates the
instantiation of the remaining, unresolved model to one or
more neighbouring AMs (e.g. created on nearby machines).
This process continues recursively until the entire model is
covered. Second, an AM is instantiated for each Component
Type in the model. An AM of a certain Type manages all
Component Instances of that Type (e.g. as in Figure 4). In
this case, fragments are implicitly defined by the model.
Third, one AM is created for each Component Instance. Each

 - of type A

- of type B

- of type C

- of type D

,

,

,

,

, …

, …

, …

, …

Service instances :

or ..

or ..

A B

 C

D

OR

1..2

* a

b

c

d

Figure 3: Abstract architectural model and instantiation examples

AM B

A B

 C

D

OR

1..2

*

Application
Instance

Lifecycle
Management

Instance
Fraction

Expressed
Model

Fraction AM A

A B

 C

D

OR

1..2

*

Instantiate/Find Service

Instantiate/Find AM

Service Binding

AM

A B

 C

D

OR

1..2

*

Local Autonomic Manager

Shared Abstract Model

AM C

A B

 C

D

OR

1..2

*
AM D

A B

 C

D

OR

1..2

*

Figure 4: Decentralised instantiation process

Client

Code generation & adaptation

A B

 C

D

OR

1..2

*

Abstract Model

Execution Platform / Middleware

Existing

Components

Goal, or,
Constraints

Runtime
Resources

Self-Grown

Application

Adaptable

 Application Instance

Autonomic
Managers

(Interpreter)

CUBE

 Figure 2: CUBE Architectural overview

AM has a Type and creates a single Component Instance of
that Type. Like in the previous case, fragments are implicitly
defined by the model. This third option was selected for our
current prototype, due to its suitability for service-oriented
technologies. Fourth, fragments are explicitly defined in the
model and one AM is created for resolving each fragment.
We believe that each of these approaches is valid and best
suited for different system types. Various combinations can
equally be foreseen for lifecycle management at different
system scales. The adopted approach influences the AM
coordination mechanisms, which were thus developed from
the perspective of this particular choice (section V).

3) AM Coordination for Global Coherence
Global coordination is based on the AMs’ local actions

and intercommunication, guided by copies of the abstract
architectural model. The core challenge lies in synchronising
the parallel actions of independent AMs. Indeed, distributed
AMs will have different clocks and messages between them
may be lost, replicated or delayed. We identified and
partially developed several coordination mechanisms
(section V) for achieving the following goals:

 Avoid detrimental or needless instance redundancy,
if AMs concurrently express the same fragment;

 Avoid isolated instance fragments that never join, as
the application grows from multiple AMs;

 Avoid maintaining fragment instances that are no
longer useful (i.e. garbage collection);

 Minimise the number of initial AMs that must be
created by external means (i.e. bootstrapping);

 Minimise the occurrence and persistence of
inconsistent application instantiation states;

 Avoid “growth flapping”. Incompatible instance
fragments can be partially destroyed and re-grown
for better fitting. This process should be designed so
as to ensure convergence within suitable delays.

III. SAMPLE APPLICATION

A mediation system for Home Monitoring was selected
for testing the proposed solution and the associated
framework [Figure 5]. The sample system monitors the
consumption of household resources, including electricity,
gas and water. Collected data is processed for calculating
different costs: house electricity, gas and water costs; region
costs; and city costs. The corresponding Component Types
include Specific Probes – collecting electricity, water and
gas measurements and various Cost Calculators – computing
consumption costs at the house, region and city levels.

The selected example is a large-scale, distributed system
with important dynamicity requirements. Households can
frequently join and leave the system, requiring corresponding
adjustments to the monitoring hierarchy. When home owners
initially activate Specific Probes in their households,
corresponding House Cost Calculators must be instantiated
and connected to the appropriate Region Calculator. If a
Region Cost Calculator is unavailable or overloaded, then it
must be created or replicated and connected to the
appropriate City Calculator. Such scenarios indicate the high

administrative load required for maintaining this system
coherent in the face of constant evolution. Our decentralised
framework was designed to scale with the number of system
nodes and with the frequency of local extensions or failures.

IV. CUBE FRAMEWORK ARCHITECTURE

A. Main Concepts and Functional Overview

In CUBE, a model defines a set of application Types,
Associations and Constraints. Context-aware interpreters, or
AMs, decide what Types and Associations to instantiate and
when (and where) to instantiate them. Currently, each AM
features a configurable type parameter indicating its
expressed Type. Each AM manages one Component Instance
(or service) of its expressed Type. AM Types are assigned
manually for the initial set of bootstrapping AMs. Grown
AMs have their Types assigned by the AMs that create them.

The self-growing process proceeds as follows. Upon
instantiation and validation, each AM receives its Type value
and the architectural model. Based on these, an AM starts by
positioning itself within the overall model - identifying the
definition of its Type in the model. Once positioned, the AM
creates a local model from the global architectural model. A
local model is a star-shaped architectural fragment: its Centre
consists of the AM’s Type; its Ends consist of the Types
Associated to the Central Type, as defined in the model.
Next, the AM resolves its local model: acquires a service for
the Central Type and Neighbour AMs for the End Types.
Acquiring a service implies finding an existing service or
instantiating one from a compatible Type. Finally, the AM
binds to its Neighbour AMs and sets in place corresponding
connections between their respective services. An AM
becomes valid when it successfully resolves its local model.
Once created, Neighbour AMs determine and resolve their
own local models. In our proof-of-concept prototype we
exclusively concentrated on the lifecycle management of
AMs since we selected a one-to-one mapping between AMs
and Component Instances. The creation and binding of actual
services will be addressed in our future developments.

B. Architectural Model Language

We specified a model definition language for formalising
abstract architectural models. We do not propose this
language as a contribution, but as an enabling example for
the proposed framework. Future work will study and adapt

Figure 5. Sample home monitoring application

existing modelling languages (e.g. [1] or [12]). Our current
model language is similar to those employed by Software
Product Lines (e.g. [13]). It comprises two main elements –
Types and Associations. Types contain Properties (e.g. id,
cardinality), Constraints (e.g. suitable instance locations or
resources) and Association References (i.e. relations with
other Types; constrained by cardinality and organised into
groups, with assigned operators - AND, OR and XOR).

Creation Policy is an essential model element specific to
our approach. Defined for each Association Reference, it
defines the management responsibility of AMs of the defined
Type towards AMs of the Associated Types (i.e. growth
direction). Creation Policies include: find - find an AM for
the Associated Type; find_or_create - find an AM and if it
does not exist then create one; or nothing - no responsibility.
In Figure 4, AM A must find or create an AM of Type B,
which must find or create AM C or AM D. Figure 6
exemplifies a Type definition for an Electricity Probe.

Figure 6: Type definition example

Figure 7: Association definition example

Association definitions include two End Types and some
additional Properties and Constraints (e.g. length, security or
communication protocols). Figure 7 exemplifies an
Association between the Electricity Probe and the Electricity
Cost Calculator Types. Notably, the Location constraint
states that both Association Ends must execute on the same
machine (e.g. the home Gateway). In the prototype
implementation, models are represented in xml format.

C. Architectural Layers

CUBE framework comprises several AMs and Runtime
Context Services that execute on a specific technological
Platform. The Platform must be in place on all stations on
which the application is instantiated. The Runtime Context
Service (or Runtime) provides relevant information on the
current execution context. One Runtime service is available
on each Platform, supplying AMs with an up-to-date view of
the local context. This view includes information on the
available AMs and Platform resources. For this purpose,
each Runtime monitors its local Platform, intercepts local
AM messages and exchanges information with Neighbour
Runtimes (i.e. Runtimes of adjacent Platforms). Runtimes
partially propagate local context states to Neighbour
Runtimes in order to diffuse local events over adjacent areas.
One or more AMs can be available on each Platform.

V. DECENTRALISED MECHANISMS

A. Event Propagation and Scopes (Communication)

In CUBE design, Runtimes intercept local events, store
them and forward them to Neighbour Runtimes. This enables
event diffusion over various scopes. Scopes can be defined
as distances from a source (e.g. physical distance or
maximum number of hops) or based on a location property
(e.g. a network domain or an administrative area). Events
carry scope-propagation data, which may be modified at
each propagation step. Event Propagation is essential for AM
coordination, providing the communication support upon
which the other decentralised mechanisms are based. The
current local prototype uses event-based communication.

B. Instance Density Detection (Counting)

Density represents the number of instances of a certain
Type within a given scope. It is important for ensuring
cardinality constraints. Currently, the one-to-one mapping
between AMs and Component Instances facilitates this task.
Upon creation, each AM signals its presence to the local
Runtime. The signalled event contains a marker with the
AM’s Type and relevant properties (in an LDAP filter-like
format). Additionally, the event contains the marker’s
validity period and scope. The local Runtime stores and
diffuses the marker to Neighbouring Runtimes until the
scope is covered. Each AM’s density on a Platform is
determined by the number of equivalent markers stored by
the local Runtime. Runtimes periodically broadcast marker
densities on the local and adjacent Platforms. AMs ask
Runtimes for marker densities, which influence the AMs’
subsequent behaviours. Our current prototype calculates
Type densities in the local Runtime.

C. Competition for Action (Leader Election)

Competition is employed whenever a certain action must
only be performed by a limited number of AMs within a
certain scope – e.g. AM creation and destruction (subsection
D). In this case, all AMs within that scope must compete for
performing the action. The goal is to ensure the conformance
of existing densities with the model’s cardinality constraints.
Currently, competition is based on a random count-down
procedure. Competing AMs select a random number from
which they count down. An AM wins if it finishes the
countdown without being interrupted. When this happens,
the winner broadcasts an inhibitor with a unique action
marker. During countdown, all AMs listen for inhibitors
carrying the marker of the action they compete for. AMs
loose if their countdown is interrupted by such an inhibitor.

D. Self-Replication and Self-Destruction

These mechanisms self-regulate the density of AMs of a
given Type. Self-Replication allows AMs to create more
AMs of the same Type, while Self-Destruction enables
excess AMs to self-destruct. AMs use the Compete for
Action mechanism (subsection C) before self-replicating or
self-destructing. This regulatory process is guided by
instance density constraints (subsection B). Density
constraints are defined in the architectural model; and

<!-- Electricity Probe - Electricity Cost Calculator -->

<association id="elec-bp_elec-cost" >

 <end typeId="elec_bp" cardinality="1"/>

 <end typeId="elec_cost_calc" cardinality="1"/>

 <association-constraints>

 <endLocations>same</endLocations>

 </association-constraints>

</association>

<!-- Electricity Probe -->

<type type="Electricity_Probe" id="elec_bp">

 <reference_associations>

 <ref_association id="elec-bp_elec-cost"

 cardinality="1"

 create_policy="find_or_create"/>

 </reference_associations>

</type>

influenced by the current state of the growth process and by
the execution context. Self-Replication and Self-Destruction
can also be employed for adjusting Component Instance
densities to fluctuating processing loads. Finally, if the
Competition for Creation mechanism fails to prevent a Type
density from crossing a threshold, then all AMs of that Type
start competing and the losing AMs Self-Destruct.

E. Activity Desynchronization (Symmetry Breaking)

Desynchronization was introduced for preventing multiple
AMs from simultaneously attempting to resolve local models
and potentially cause resource consumption peaks or
overflows. This situation may occur as applications are first
instantiated, or as an important part of the application fails
and must be re-constructed. In such cases, multiple AMs are
concurrently trying to create or repair their local fragments,
inducing important processing delays or event losses. This
may impede the correct functioning of certain decentralised
mechanisms. Desynchronization is based on selecting
diverse waiting periods for delaying AM reactions to certain
events – e.g. recreating failed AMs or regulating the Periodic
Conformance Verification process (subsection F).

F. Periodic Conformance Verification

In CUBE, several mechanisms were set in place for
coordinating independent system management processes
(subsections B, C and D). Nonetheless, these mechanisms
strongly rely on event communication, which may prove
unreliable in most distributed scenarios (e.g. message loss or
delay). For this reason, Periodic Conformance Verification is
introduced for preventing the occurrence, or persistence, of
non-compliant instances. This mechanism triggers the AMs’
model resolution process at repeated, desynchronised
intervals. AMs execute the same procedures for initial
fragment instantiation, as for fragment repair or conformance
verification; certainly, the required management actions will
differ. This process ensures that accidental instantiation
errors are detected and corrected over time.

VI. PROTOTYPE IMPLEMENTATION

A local framework prototype for the Home Monitoring
application was implemented and validated, using a Java-
based Service Oriented Component technology –
iPOJO

1
/OSGi2. In addition to its inherent modularity and

loose-coupling, iPOJO offers some essential functions for
the runtime assembly and evolution of adaptable applications
- e.g. dynamic component deployment, bundle dependency
resolution, automatic service binding, service state change
notifications, naming and directory service or event-based
communication. The prototype Platform comprises a Java
Virtual Machine, an OSGi implementation (i.e. Felix

3
) and

the iPOJO runtime. The prototype was initially limited to a
single Platform and one Runtime service. The Runtime and
the AMs were implemented as iPOJO Services and include a
core set of decentralised mechanisms: Competition for

1 iPOJO Project: ipojo. org
2 OSGi Alliance: osgi. org
3 Apache Felix: felix. apache. org

Action; Activity Desynchronization; and Density Detection.
AM coordination and failure-detection rely on OSGi’s event-
based communication support. A graphical facility using
Prefuse

4
 toolkit displays the AMs’ graph during runtime.

The current prototype focuses on creating and binding
AMs of the correct Types. Creating the correct AM layer is
equivalent to creating the correct application instance, since
Component Instances and their bindings have a one-to-one
mapping to AMs and their connections. The additional
challenges ensued by actual component instantiation and
binding remain the subject of our future research.

VII. TEST SCENARIOS AND RESULTS

CUBE prototype was tested for self-growing and self-
repairing a local instance of the Home Monitoring
application (section III). The architectural model employed
included application Types (i.e. Electricity, Water and Gas
Probes and various Cost Calculators), Associations and
Constraints (e.g. cardinality, location and creation policies).
The model imposes that each Probe (e.g. Electricity, Gas or
Water Probe) be associated to a specific Cost Calculator,
which must be situated on the same house gateway.
Similarly, each specific Calculator must be associated to one
Household Calculator, located at the same house address.
Finally, Household Calculators must be associated to Region
Calculators, which must be associated to a City Calculator.
Household, Region and City Calculators must have the same
city locations. Concerning creation policies, Probes must
find_or_create matching Calculators, which find_or_create a
Household Calculator. These must find_or_create a Region
Calculator, which must find_or_create a City Calculator.

In this scenario, Electricity, Gas and Water Probe AMs
were created via an external application. Starting from these
initial AMs, the framework correctly created and bound the
missing AMs so as to obtain a model-compliant mediation
tree. Figure 8.a shows the mediation hierarchy obtained from
the initial Water and Gas Probes, in the same household. In
this case, the two Probes (step 1) determined their missing
Cost Calculators and concomitantly created them (step 2).
Next, the new Water and Gas Calculators concurrently
detected the missing Household Calculator. The Competition
for Creation mechanism ensured that only one of the two
Calculators instantiated a Household Calculator (step 3). The
losing Calculator waited, then found and connected to the
created instance (step 4). In parallel, the Household
Calculator created the Region Calculator (step 4), which
created the City Calculator (step 5). In the displayed graphs,
nodes represent AMs of different Types. Labels show the
AMs’ unique IDs, which contain the AM’s Type and
instance number suffix. Figure 8.b shows how the
framework extended the initial hierarchy when two
Electricity Probes were dynamically added - one to the
existing and one to a different household. Subsequent
scenarios tested CUBE’s capability of repairing the mediation
hierarchies – e.g. all Gas Calculators were removed from the
existing tree and the framework reconstructed them.

4 Prefuse visualisation toolkit: prefuse .org

We tested the prototype’s capability to scale to the limits
of the local machine resources (i.e. a mediation tree of 352
nodes: 150 Probes and 202 Calculators). These tests were
important for identifying congestion-related challenges, such
as the framework’s behaviour in the presence of event losses.
The Desynchronization mechanism was implemented to
reduce the likelihood of such situations. The Periodic
Conformance Verification will be introduced in future work
to correct them. The goal of the presented scenarios was to
show the successful coordination of decentralised processes
based on the proposed architectural model and mechanisms.
Performance evaluation was not a concern in these scenarios.

VIII. RELATED WORK

Contributions from two main domains are relevant to our
proposal. First, Model-Driven Engineering (MDE) promotes
models as domain-specific system abstractions from which
executable computing programs can be generated. Such
models have been increasingly introduced into the runtime
environment to help autonomic management processes (e.g.
[14] or [15]). Several model-based solutions propose
application self-instantiation and self-repair (e.g. [1], [3] or
[4]). Still, most of these approaches rely on concrete runtime
models and centralised interpreting processes, which limit
their flexibility and scalability. CUBE offers a decentralised
solution, guided by static, abstract models; only model
fragments must be locally maintained and interpreted during
runtime. Similar to our proposal, the solution in [11] uses
architectural constraints for self-organising components into
applications that conform to a predefined architectural style.
While this approach only focuses on the self-configuration of
existing components, CUBE additionally manages the entire
lifecycles of components and of AMs. Also, in [11], all
managers receive and process all broadcasted events. CUBE
AMs only process events relevant to their local models.

A second research domain related to our proposal
comprises nature-inspired initiatives. Most relevant to our
work, several projects adopt concepts from developmental
biology, such as the genotype / phenotype paradigm, as an
alternative means of Software Engineering complex adaptive
systems e.g. [8]-[10]. CUBE provides a concrete framework
that is compatible with these visions, while rendering self-
development and self-organisation more controllable and
predictable. In this context, several contributions define the
software equivalent of the biological genotype as an
unorganised collection of predefined behaviours. Identical
components specialise by selecting the behaviours to activate
and execute (e.g. [7]). CUBE views genotypes as architectural
models, hence adding structural constraints to behavioural
specialisation. This idea is compatible with the
“Embryomorphic Engineering” direction promoted in [8], in
which development of complex adaptable systems is
achieved via the dynamic, decentralised interpretation of
predefined meta-designs. Using the author’s terminology,
CUBE would represent an Intelligent Meta-Design (IMD)
solution, if architectural models remained static and an

Evolutionary Meta-Design (EMD) approach if architectural
models were allowed to evolve (i.e. variation and selection).

Several interesting contributions have also been proposed
in the multi-agent community. For example, in [9] or [10], an
overall application plan is compiled into individual agent
programs, in a way that ensures that correct global results
emerge from the local agents’ executions. Individual agent
programs can be pre-differentiated for every agent [9] or
identical for all agents [10]. These contributions focus on
the self-organisation of already instantiated agents. In CUBE,
AMs equally manage each others’ lifecycles and the lifecycle
of the application they create. Additionally, CUBE AMs are
context-aware, and hence self-adaptable to their execution
environments. Finally, CUBE separates the application-
specific design, or model, from the AMs’ interpretation
logic. This separation is maintained during runtime, making
the two parts independently reusable and evolvable.

In contrast to many biologically-inspired contributions
(e.g. [8] or [10]), CUBE was designed for applications in
which the application’s physical shape (in Euclidian space)
represents a minor concern, if at all; the application’s
behaviour or function is the main objective. Indeed, CUBE
does provide support for constraints that can be location-
related (e.g. minimum physical distance between deployed
components). Still, CUBE’s objective is to create “classic”
software applications, consisting of specialised components
connected in precise ways, in order to provide a well-defined
function. In this context, CUBE’s contribution consists in
rendering the traditionally rigid design of such applications
more flexible, adaptable and context-aware. CUBE can ensure
overall application functionality in so far as application
behaviour can be guaranteed by the application structure -
i.e. correctly interconnected instances of well-defined
component types. We believe that this is a reasonable
assumption for applications in many specific domains,
including the mediation domain targeted in our prototype.

IX. CONCLUSIONS AND FUTURE WORK

This paper presented CUBE, a decentralised solution for
self-growing and adapting service-oriented mediation
applications. Two key elements are at the core of our
architecture: i) independent Autonomic Managers (AMs)
that self-replicate, specialise for different application
fragments, self-organise fragments into applications and self-
destroy; and, ii) an abstract architectural model copied in all
AMs, controlling their self-growth and self-organisation so
as to ensure the emergence of core application properties,
while enabling various degrees of application variation. An
important characteristic of our design consists of the clear
separation between the abstract architectural models; the
decentralized, context-sensitive interpretation logic (AMs);
and the produced application instances. These three elements
can be separately evolved and reused. Most importantly, this
enables the autonomic creation of application instances that
are adapted to their execution contexts.

 Water_ Gas_

 Water_Cost_0 Gas_Cost_1

Water_ Gas_

 Household_Cost_2

Water_Cost_0 Gas_Cost_1

Water_ Gas_

Household_Cost_2

Water_Cost_0 Gas_Cost_1

Region_Cost_3

Water_ Gas_

Household_Cost_2

Water_Cost_0 Gas_Cost_1

Region_Cost_3

City_Cost_4

Water_ Gas_

1 2 3 4 5 a

b

Household_Cost

_2

Water_Cost_0 Gas_Cost_1

Region_Cost_3

City_Cost_4

Water_ Gas_ Elec_ Elec_

Elec_Cost_5 Elec_Cost_6

Household_Cost

_2

Water_Cost_0 Gas_Cost_1

Region_Cost_3

City_Cost_4

Water_ Gas_ Elec_ Elec_

Household_Cost_7

Elec_Cost_5 Elec_Cost_6

Household_Cost_2

Water_Cost_0 Gas_Cost_1

Region_Cost_3

City_Cost_4

Water_ Gas_ Elec_ Elec_

6 7 8

Region_Cost_3

Household_Cost_2

Water_ Gas_ Elec_

Elec_Cost_5 Water_Cost_0 Gas_Cost_1

City_Cost_4

Elec_

Household_Cost_7

Elec_Cost_6

9

Figure 8. Home Monitoring hierarchy: a) initially grown from a Water and
a Gas Probe, residing on the same household Gateway; b) extended after

adding two Electricty Probes - one in the existing household and one in a

different household; border: Red/Green for Seed/Grown AMs respectively.

This paper focused on presenting the main architectural
elements and the core decentralised mechanisms identified so
far for self-organisation and correct emergent behaviours. A
framework prototype was implemented using iPOJO Service
Oriented Components and successfully tested on a mediation
application for Home Monitoring. The prototype showed the
capacity of the proposed architecture to ensure the self-
creation, extension and self-repair of coherent applications
that meet a predefined goal. In the presented prototype, the
mediation system’s creation, evolution and long-term
survivability were the key objectives. Performance will be
considered as the framework evolves. The current prototype
ensures the desired properties at a local level. While
important challenges remain for extending the framework to
distributed environments, we consider that our decentralised
architecture and self-organisation mechanisms constitute a
noteworthy contribution with respect to existing lifecycle
management utilities. Further extensions will focus on:
implementing and testing additional decentralised
mechanisms; adding support for distributed Platforms;
deploying, instantiating and binding Component Instances;
and enriching the current model specification language (e.g.
[1] or [12]). Finally, particular attention will be given to the
study of existing nature-inspired design patterns (e.g. [6]).
CUBE’s long-term goal is to enable large-scale, distributed
applications to autonomously grow and survive in volatile
execution environments, over extended periods.

ACKNOWLEDGMENT

We’d like to thank Dr. Graham Byrnes - Biostatics
Group, International Agency for Research on Cancer, for his
important insights into developmental biology.

REFERENCES

[1] J. Branke et al, “Organic Computing - Addressing Complexity by
Controlled Self-Organisation”, Intl Symp on Leveraging Applications
of Formal Methods, Verification and Validation, pp 185-191, 2006

[2] P. Lalanda, L. Bellissard and R. Balter, “Asynchronous Mediation for
Integrating Business and Operational Processes”, IEEE Internet
Computing, February 2006

[3] D. Garlan et al., “Rainbow: Architecture-based self-adaptation with
reusable infrastructure” Computer, 37(10):46–54, 2004

[4] S. Sicard, F. Boyer and N. D. Palma, “Using components for
architecture-based management: the self-repair case”, International
Conference on Software Engineering (ICSE), pp 101–110, 2008.

[5] S. Forrest, J. Balthrop, M. Glickman, D.Ackley, “Computation in the
Wild”, Internet as a Large-Scale Complex System, Oxfrd Press, 2002

[6] O. Babaoglu, et al., “Design Patterns from Biology for Distributed
Computing”, ACM TAAS, v.1, n.1, pp 26-66, 2006

[7] K. N. Lodding, “The Hitchhiker's Guide to Biomorphic Software”,
ACM Queue, v.2, n.4, pp 66-75, June 2004

[8] R. Doursat, “Organically grown architectures: creating decentralised,
autonomous systems by embryomorphic engineering”, Organic
Computing, R. P. Würtz, ed., Springer-Verlag, pp 167-200, 2008

[9] R. Nagpal, “Programmable Self-Assembly Using Biologically-
Inspired Multiagent Controll”, International Conference on
Autonomous Agents, Bologna, Italy, July 2002

[10] D.Coore, MIT PhD “BotanicalComputing: A developmental approach
to generating interconnect topologies on amorphous computer” 1999

[11] I. Georgiadis, J. Magee, J. Kramer, “Self-organising software
architectures for distributed systems”, Workshop on Self-healing
systems, pp 33-38, South Carolina, US, 2002

[12] OMG Specification, “Deployment and Configuration of Component-
based Distributed Applications”, v4.0.

[13] M. Matinlassi, “Comparison of Software Product Line Architecture
Design Methods”, ICSE, Edinburgh, Scotland, UK, 2004

[14] IEEE Computer, Special Issue on “Models @ Run.Time”, Oct. 2009

[15] R. France and B. Rumpe, “Model-driven Development of Complex
Software: A Research Roadmap”, FSE, pp 37-54, USA, 2007.

