
A Framework for Using Component Redundancy for
Self-Adapting and Self-Optimising Component-Based

Enterprise Systems
Ada Diaconescu

Performance Engineering Laboratory
Dublin City University, Ireland

+353-1-7007644

diacones@eeng.dcu.ie

ABSTRACT
We propose a framework that uses component redundancy for
enabling self-adaptation, self-optimisation and self-healing
capabilities in component-based enterprise software systems.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management – software
configuration, management, software quality assurance (SQA).
General Terms
Management, Performance, Design.

Keywords
Redundancy, middleware, self-adaptation, self-optimisation,
decision policy, component-based enterprise systems.

1. INTRODUCTION AND PROBLEM
A significant problem in the information technology (IT) industry
at present is complexity [1]. The extensive use of software systems
in various domains imposes certain requirements on their quality
characteristics (e.g. performance, dependability). Thus, building,
managing and optimising such complex systems is becoming a
growing concern. Component technologies [2], such as EJB,
CCM or .NET, address many of the complexity related
difficulties, by facilitating software modularity and reusability.
Nevertheless, such technologies introduce new challenges. The
way individual components behave and interact in a system, as
well as their runtime environment, strongly influence global
system performance. However, lack of system internal
information, plus the dynamic nature of component-based
applications, makes the performance of complex systems hard to
analyse and predict. Component developers do not know the
running context(s) of their components and application integrators
do not have access to component internal information. In addition,
runtime system modifications and execution context changes can
render initial optimisations obsolete, as different design and
implementation strategies are optimal in different running
contexts [3], [4]. Thus, ensuring quality guarantees for complex
component-based systems becomes a challenging task at best.

2. PROPOSED SOLUTION
We propose enabling component-based applications to
automatically change their implementation at runtime in order to
tune themselves and continuously adapt to variations in their
environment (e.g. workload, usage patterns, available resources).
For this goal to be met, the following must be provided: i)
different design and implementation strategies for software
components, available at runtime; ii) a mechanism for
automatically alternating the available strategies at runtime, as
needed for reaching the high-level goals of software applications.

2.1 Component Redundancy
Component redundancy is a concept we introduce for addressing
the former requirement. It means the presence, at runtime, of
multiple component variants providing identical or equivalent
services but with different implementation strategies. We refer to
these component variants as redundant components. Only one of
the redundant components providing a service is assigned, at any
moment in time, for handling a certain client request for that
service. The selected variant is referred to as the active component
variant. Redundant components can be added, updated, or
removed at runtime.

We implemented and tested an example scenario that shows the
applicability of our approach [4]. The EJB component technology
was used for implementing this example. Different strategies were
selected for implementing two distinct component variants
providing the same functionality: repeated retrieval of information
from a remote database (DB). The first variant consists of stateless
session beans only and uses SQL code for directly accessing the
DB. The second variant (session façade) employs a stateless
session bean as a wrapper to an entity bean, which encapsulates
persistent data. The entity bean acts as a local cache for data in the
remote DB. We measured the response delays for each variant, in
different environmental conditions (i.e. available bandwidth on
the network link to the DB). When the link to the DB was lightly
loaded, the session-only variant proved optimal. For increased
network loads however, the session façade variant became
optimal, as its inter-process communication and CPU overhead
became lower than the repeated database access overhead
introduced by the sessions-only variant. As these results indicate,
knowledgeably alternating the usage of redundant components,
optimised for different running contexts, ensures better overall
performance than either component variant could provide.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

2.2 Our framework
We propose a framework for supporting and managing redundant
components, capitalizing on their redundancy to continuously
adapt and optimise applications and meet their quality goals (e.g.
response times, throughputs). The framework is divided into three
main logical tiers: monitoring, evaluation and action.

The monitoring tier is concerned with obtaining run-time
information on software applications, exclusively on active
components (response times, throughput), as well as on their
execution environments (incoming workload, CPU, I/O usage).
Collected information is analysed and potential ‘problem’
components identified.

The evaluation tier is responsible for deciding which components
to (in)activate and when, in order to obtain quality improvements.
This involves two main activities: i) accumulate information on
components and their running environment; ii) process
information and determine the optimal redundant component(s),
in certain contexts. Component information is represented as a
formal component description. Component providers can
optionally supply initial component descriptions, at deployment
time. An initial description can indicate the used implementation
strategy, or the running context for which a component was
optimised. It can also provide relative quality attribute values,
and/or their variation with environmental conditions. This sort of
information can be acquired from testing results, estimations, or
previous experience with provided components. These
descriptions are then updated at runtime with accurate monitoring
information for the actual execution contexts. Component
descriptions and runtime monitoring information are used as input
to decision policies. These are sets of rules, dictating the actions to
be taken in case certain conditions are being satisfied. Decision
policies can be customised for each deployed application, for
serving the specific application goals (e.g. requested quality
attributes and their values) and can be added, modified or deleted
at runtime.

The action tier enforces decisions taken in the evaluation tier into
the running application, using a request indirection mechanism.
That is, incoming client calls are directed to an instance of the
active component variant, upon arrival. When the active
component changes, new incoming requests are directed to
instances of the new active component. State transfer is not
needed in this case, as client requests are not transferred between
instances of different components; a particular interaction always
executes with the component instances it started with.

The three logical tiers operate in an automated, feedback-loop
manner: application performance is monitored and evaluated;
optimal redundant component(s) are identified and activated
(action); and the resulting application is (re-)monitored and (re-
)evaluated. Component descriptions and decision policies are
tuned, or updated in effect. The evaluation tier can thus improve
its decisions, in time, as it gradually ‘learns’ about the
performance and behavioural characteristics of the component-
based application it has to manage.

We are implementing our framework in a manner that makes it
independent of the specific applications it has to manage.
Conceptually, our framework belongs to the execution platform
(e.g. J2EE) on which applications are deployed and run, being at
the same level with already provided services (e.g. security,

transaction support, connectivity). This makes our framework
transparent to clients of applications deployed on such platforms.

For improved scalability, we decentralise our three-tiered
framework and employ different intercommunicating instances of
our framework to manage applications at different granularities
(e.g. single component, component group, or global application).
We organise these instances in a hierarchical manner and specify
a clear protocol for their intercommunication. This allows for
local application problems (e.g. at component level) to be dealt
with locally, when possible, while also supporting global
optimisations, when necessary.

We instrumented the open source JBoss application server so that
to provide call path related information. This allows instances of
our framework dynamically detect when and what method(s), of
what EJBs, are being called by a certain method of a certain EJB
instance. This information, together with component response
time and throughput information, is used to determine whether
provided services are meeting their performance requirements, as
well as help detect ‘problem’ components.

3. CONCLUSIONS AND FUTURE WORK
Our main contribution is a framework that uses component
redundancy to automatically manage complex software
applications and meet their quality goals. The main features of our
framework that differentiate it from similar work in the area (e.g.
[3], [5]) are its independence from specific components or
applications and its decentralised operation. The framework has
no strict requirements on the initial information to be provided on
the deployed components. It is devised to be able to collect
information, and learn in time about the component-based
application it has to manage. Management activities at different
granularity levels (e.g. component, application) can be switched
on and off dynamically, as needed for meeting quality goals,
while introducing minimum overhead. The evaluation and
decision mechanism is critical to our approach and is therefore the
focus of our ongoing research. We intend to adopt existing
solutions, relevant to our framework, such as monitoring solutions
(e.g. the COMPAS project [6]), rule engines, or learning methods.

4. ACKNOWLEDGMENTS
This work is funded by Enterprise Ireland Informatics Research
Initiative 2002s.

5. REFERENCES
[1] J. O. Kephart, D. M. Chess, “The Vision of Autonomic

Computing”, IEEE Computer, January 2003

[2] C. Szyperski et al. “Component Software: Beyond Object-
Oriented Programming”, Addison-Wesley, November 2002

[3] Daniel M. Yellin, “Competitive algorithms for the dynamic
selection of component implementations”, IBM Systems
Journal, Vol. 42, no 1, 2003

[4] A. Diaconescu, J. Murphy, “A Framework for Using
Component Redundancy for Self-Optimising and Self-
Healing Component Based Systems”, WADS workshop,
ICSE’03, Hilton Portland, Oregon USA, May 3-10, 2003

[5] S. Cheng, D. Garlan, et al., “Using Architectural Style as a
Basis for Self-repair”, WICSA’02, Montreal, Aug. 2002

[6] The COMPAS project home page: www.ejbperformance.org

http://www.ejbperformance.org/

	INTRODUCTION AND PROBLEM
	PROPOSED SOLUTION
	Component Redundancy
	Our framework

	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

