
Controlling self-organising software applications with archetypes

Bassem Debbabi
LIG laboratory, University of Grenoble

Grenoble, France
Email: name.surname@imag.fr

Ada Diaconescu*
CNRS LTCI, Telecom ParisTech

Paris, France
Email: name.surname@telecom-paristech.fr

Philippe Lalanda
LIG laboratory, University of Grenoble

Grenoble, France
Email: name.surname@imag.fr

Abstract—Self-organisation is a promising solution for build-
ing complicated, large-scale software systems that must meet
stringent adaptability and survivability requirements. At the
same time, controlling self-organising software to ensure global
system properties and functions is a difficult problem. This
paper proposes a solution that uses architectural templates,
or archetypes, replicated across a set of identical agents, and
interpreted at runtime to control the agents’ self-organising be-
haviour and results. The solution ensures, by construction, that
any resulting software system meets a set of predefined goals,
or constraints, while maintaining many of the self-organisation
related advantages. A framework prototype was implemented
and tested to show the viability of the proposed approach, in
the context of a distributed data-mediation application.

Keywords-self-organisation; self-growing software; architec-
tural templates; autonomic lifecycle management.

I. INTRODUCTION

Modern software systems seem to face two antagonis-
tic requirements. To remain useful, they must constantly
provide a predefined set of business functions and Quality
of Service (QoS) properties. To manage their large-scales
and adapt to ever changing conditions they must rely on
decentralised processes that continuously reassemble their
contents. Allowing a system to self-organise its internal
composition during execution, while not impending on its
core functionalities and properties, is a difficult task, at best.
This paper presents an approach - called Cube1 - that aims
to simultaneously address these antagonistic requirements.
The main idea relies on the use of a predefined architectural
template, or archetype, which constrains the self-organising
behaviour of a set of identical agents in order to control
their produced results. In this solution, essential system goals
are explicitly and formally specified in the archetype, which
is then copied and distributed to all agents. Each agent is
capable of reading, interpreting and expressing any part of
the archetype, during runtime. This means that an agent
is able to create and manage a software application part
that conforms to the constraints defined in a corresponding
archetype part. Creating an application part implies deploy-
ing, instantiating, configuring and interconnecting software
components of various types while meeting the constraints

* This work has been funded by MINALOGIC’s MEDICAL project.
1Cube project: http://cube.imag.fr

defined in its archetype part. Each agent determines which
archetype part to express depending on the application parts
created by other agents. The final objective is to enable
agents to self-organise so as to individually express different
archetype parts and to interconnect the resulting application
parts in order to collaboratively create a software application
that matches the overall archetype. While all resulting ap-
plications match the archetype, each application may feature
its own context-dependent specificities (e.g. concrete compo-
nent implementations, number of instances and deployment
platforms). This approach can be employed to autonomously
manage the lifecycle of large-scale distributed applications,
ensuring both their instantiation and subsequent adaptations.

The proposed solution raises three main types of diffi-
culties. First, decentralised agent processes must be able to
partition the archetype into complementary parts that cover
the entire archetype. Second, agents must assign archetype
parts among themselves so that each part, if it must be
unique, is expressed by a single agent. Third, archetype
constraints that span several archetype parts must be met
via collaborations among the subset of agents involved
in expressing those archetype parts. Several solutions are
possible to address these difficulties - e.g., [1] [2] [3].

In the solution presented here, one agent is assigned
to each execution platform in the system (Figure 1). The
first two difficulties are simultaneously addressed as agents
dynamically divide the archetype into parts. Each agent
expresses a maximum of archetype components, starting
from an externally-designated point and until local resolution
capacities are reached. It then forwards the process to neigh-
bouring agents, designating their archetype starting points.
An agent’s assigned archetype part is the part it manages
to express. The process is kicked-off at system start-up
and whenever the managed application changes. To address
the third problem, coordination procedures are mediated via
hierarchical, dynamically-designated leader agents, which
control access to properties that must hold within a certain
application region, or Scope (section II). This solution
prevents multiple agents from simultaneously expressing
the same archetype component, when the archetype forbids
component replication. In case the number of agents to
coordinate for ensuring non-local properties becomes ex-
tremely large, the hierarchical solution can be replaced with



CACube
Agents

Managed 
Distributed
Application

Scopes

Archetype

CACACACA

Figure 1. Cube agents managing distributed application

a completely decentralised algorithm (e.g. [4] or [5]).
Our previous work on this topic focused on highlighting

the motivation and core principles of the Cube approach [1];
identifying archetype partitioning and agent assignment op-
tions, and exploring mutual agent creation and decentralised
coordination [2]. An analogy between the proposed solution
and morphogenesis - the biological organism development
process - is briefly presented in [3]. These preliminary
works allowed us to identify multiple strategic choices for
implementing different Cube application parts. Yet, these
parts proved difficult to alter or extend individually in order
to create alternative variants for various scenarios.

To surpass this limitation, this paper proposes a modu-
lar, adaptable and extensible Cube agent architecture and
framework. Choices made in the presented framework can
be replaced with alternative approaches without disturb-
ing the remaining agent functions. They currently include
a hierarchical approach for Scope formation (previously
defined dynamically based on event propagation distances
[2]); an assignment policy associating one agent to each
machine (previously assigning one agent to each component
instance [2]); and a hybrid distributed coordination strategy
(previously decentralised but confined to a single platform).

In addition, this paper identifies necessary archetype
meta-types and defines a formal extensible archetype lan-
guage. The language defines a core set of elements and
supports various domain-specific extensions. Similarly, the
presented framework provides a core set of functionalities
and supports various extensions via well-defined plug-ins.
A framework implementation was developed and evaluated
for autonomously creating and managing a data-mediation
application for home resource monitoring. Experimental
results indicate the viability of the proposed approach and
open several directions for future research.

II. ARCHETYPE-CONTROLLED SELF-ORGANISATION

An archetype defines a system’s architectural template,
represented as a directed acyclic graph (DAG), with man-
aged element Types as nodes (e.g. components or execution
platforms) and Constraints between them as arcs (e.g. com-
ponent interconnections or deployment preferences) (subsec-
tion IV-B). All agents receive an archetype copy. Agents
are initially identical and can read, interpret and express

any archetype part in order to produce a corresponding
application part. At runtime, each agent differentiates and
only focuses on expressing one archetype part. An agent’s
archetype expression starts from a pre-existing application
component instance, created via an internal or external
process (section IV-C). The agent first matches the compo-
nent to existing archetype statement(s). The archetype point
where the component is determined to fit represents the
agent’s starting point for archetype expression. Archetype
expression basically involves finding or creating component
instances of types defined in the archetype, and placing and
connecting them as indicated in the archetype constraints.
The agent progressively resolves interconnected constraints
and generates a growing application part, until it reaches a
constraint that it cannot resolve locally.

To forward the process, the agent must connect to agents
that are specialised in expressing archetype elements that
are bordering its own archetype part. If such specialised
agents are already available, the agent must find and connect
to them. It must then attempt to merge the application
part it produced with these agents’ respective application
parts, by connecting component instances on the border of
its part to component instances managed by neighbouring
agents, following archetype constraints. If such agents do
not yet exist, as is the case when the application is initially
created, the agent must co-opt one or several non-specialised
agents and point them to the archetype starting points that
correspond to the researched elements. In either case, the
newly co-opted agents continue the process in parallel,
each one from its designated archetype position and until
reaching its local limits, hence progressively defining and
expressing additional archetype parts. The process stops
when the entire archetype is covered and the corresponding
application fully grown. Partial runtime failures trigger the
agents that border missing application parts to re-organise,
as in the initial procedure, filling-in detected gap(s), and
regenerating a compliant solution (not yet implemented).

Agent synchronisation and coordination problems must be
addressed to avoid overlapping archetype parts from being
simultaneously assigned to multiple agents. Nonetheless,
duplicated archetype parts only represent a problem when
the repeated expression of such parts infringes on archetype
constraints. For example, a constraint can impose that a
single component instance of a certain type exists within
a network domain. In this case, if an archetype part defining
that component type is expressed more than once within that
domain, the component will be instantiated several times
and infringe the constraint. This problem is equivalent to
the previously identified difficulty - ensuring a property
that spans multiple archetype parts. To solve this difficulty
the presented solution uses a hierarchical control design. It
introduces a new archetype element - the Scope - represent-
ing an application deployment area within which a desired
property must hold. For example, a Scope can represent an



administrative network domain, a geographical location, or
a set of platforms sharing certain characteristics. A unique,
property-specific Scope controller (or Leader) is elected
among agents within each Scope. When having to resolve a
non-local constraint within a Scope, agents must contact the
Scope Leader to ensure the synchronisation and coordination
of their parallel actions (e.g. the Leader indicates whether
an instance of a certain type already exists).

Before the agent self-organisation process starts, an ini-
tialisation phase is executed to: assign each available system
platform to one or several of the archetype-defined Scopes;
to instantiate a Top Scope Leader at a location designated
in the archetype; and, to designate one Scope Leader per
Scope and register it with the Top Scope Leader.

III. DATA-MEDIATION SYSTEM EXAMPLE

As an application example, we consider the autonomic
lifecycle management of a distributed data-mediation sys-
tem for monitoring the consumption of home resources,
including electricity, gas and water. Generally, the purpose
of data-mediation applications is to collect data from several
sources, then transport and process the data so that it can be
consumed by several sinks. Their architecture takes the form
of a directed acyclic graph (DAG), where nodes are data-
mediator components - or Mediators - (receiving, processing
and forwarding data) and arcs are connections between Me-
diators (transmitting data). The use case considers multiple
data sources representing resource monitoring probes and
one sink representing a global cost calculator for consumed
resources. The data-mediation application consists of a num-
ber of interconnected Mediators, each one processing data
from sources or other Mediators to calculate consumption
costs at various granularity levels, including home, city and
country [2]. Cube’s role is to create and maintain a data-
mediation application that meets the architectural constraints
specified in the designer’s archetype. Experiments concen-
trate on the initial creation of the data-mediation application.

While the archetype of this sample system seems rela-
tively simple (subsection V-A), actually managing the life-
cycle of full-scale running applications conforming with
archetype constraints can become highly difficult, risky and
costly. Considering that millions of houses in a country may
join the system, the number of mediators to be deployed
on gateways and servers can similarly reach the order of
millions. Moreover, whenever a house joins or leaves the
system, corresponding data-mediation branches have to be
set in place or removed from the overall system. As a simple
example, consider that a new gas probe (GP ) is added to one
of the homes. Data provided by the new GP must be sent to
a central house collector (HC), which merges data from all
probes in that house. Implicitly, the GP mediator must be
connected to a HC mediator. The HC instance must either
exist already or be created on the gateway. Similarly, data
from the HC must be transported to a city aggregator (CA),

which merges data from a number of houses and sends it to
city calculator (CC). The CC merges data from all CAs in
a city and sends the results to a national aggregator (NA),
which estimates the country’s total consumption.

Considering for example that the mediation infrastructure
is already set in place at the city and national level, let’s see
how Cube intervenes to automatically create the mediation
branch for connecting the new GP to the existing media-
tion graph. The Cube agent managing the house gateway
automatically detects the new GP instance and consults the
archetype for any constraints on components of the GP type.
In doing so it determines that GP must be connected to a
HC within the same household. Hence, it searches for an
existing HC on the local gateway and connects the GP
to it. If an HC does not yet exist, Cube creates one and
connects it to a CA that it must find in the same city; this
is indicated in the HC’s archetype constraints. During this
process, the Cube agent on the gateway must contact the
Cube agent on the server where the CA executes in order
to connect the two mediators - HC and CA. At this point,
the new branch is created and the resulting application shape
conforms to the archetype. This was achieved without having
to re-plan and re-implement the entire deployment schema of
the overall mediation graph. In the following section we will
reuse this simple scenario to exemplify the Cube archetype
and resolver. Section V details the full example.

IV. CUBE FRAMEWORK

A. Cube Agent Internal Architecture

The internal architecture of a Cube agent follows a rather
“classic” control loop structure (Figure 2). Technology-
specific Monitors and Executors (Ms-Es) ensure data-
collection and modification-reification from and into the
managed application part, respectively. A Resolver compo-
nent provides the control decision logic indirectly linking

Runtime Model Part

Archetype

Managed Application Part

Cube Agent

Resolution

Execute

Reification

Monitor

Notification

M
essages E

xchange

Constraint 
Resolvers

Uses

Monitors Executors

S
c
o
p

e
 M

a
n

a
g

e
r

Uses

Messages Exchange

Resolver

Figure 2. Cube agent internal architecture



data collection to application modification. The Resolver
analyses the current state and context of the managed
application part and plans changes for meeting management
goals. Goals are expressed as a set of formally-defined
constraints in the archetype. The Resolver actually consists
of a core component (Resolver in Figure 2) and an ex-
tensible set of constraint-specific components (Constraint
Resolvers). The core Resolver can read the archetype and
create Constraint Resolution Graphs (subsection IV-C). Each
Constraint Resolver (CR) is specialised in resolving one
constraint type - e.g., one CR for component interconnec-
tion constraints and another one for component deployment
constraints. To express an archetype part, the core Resolver
creates the overall constraint graph of that part and forwards
constraint resolution tasks to the corresponding CRs. This
architecture allows extending both the archetype - via addi-
tional constraint types - and the agent Resolver that must ex-
press the archetype - via additional CRs. Similarly, specific
Ms-Es can be introduced for each technology implementing
the managed application part. Additional Monitors can be
introduced to provide context-specific information.

Communication between the Ms-Es and the Resolver
is mediated via a Runtime Model Part. This represents a
local runtime view of the application part that the agent is
managing. Model elements only provide information that
is necessary for the agent Resolver to determine if they
meet their archetype constraints. Ms-Es implement a causal
relation [6] between the Managed Application Part and
the Runtime Model Part. This means that any runtime
modification in the Managed Application Part is reflected
into the Runtime Model Part (via the Monitors) and any
modification in the Runtime Model Part, once validated by
the Resolver, is reflected into the Managed Application Part
(via the Executors). In this context, for meeting the archetype
goals, the agent Resolver aims to create and maintain a
Runtime Model Part that meets the constraints specified
in the expressed archetype part. Different CRs propose
modifications to the Runtime Model Part in order to resolve
different constraint types. The core Resolver arbitrates and
solves potential conflicts among their propositions (not used
in the presented use case). The Resolver validates the
Runtime Model Part when it determines that it meets the
constraints in the expressed archetype part. At that point, the
concerned Executors are notified to reflect (or implement)
the Runtime Model Part into the managed application part.

The borders of an agent’s Runtime Model Part may
represent links to remote elements in the Runtime Model
Parts of neighbouring agents. This is the case whenever
an interconnection constraint exists between components
that were instantiated on different platforms, managed by
different agents. When such cross-platform constraints exist,
the concerned agents must collaborate and jointly solve the
constraints. Consequently, before validating its own Runtime
Model Part, an agent might have to wait until a collaborating

agent confirms the resolution of a cross-platform constraint.
Finally, at any one time, the complete Runtime Model of the
overall application can be seen as partitioned into Runtime
Model Parts managed by interconnected Cube agents.

B. Archetype Specification

Cube archetypes are specified in a descriptive, structured,
mark-up meta-language (based on xml), which agent Re-
solvers can process at runtime. We defined a set of Cube-
specific core meta-types2 (xml tags), which can be extended
as needed with domain-specific meta-types. The current
prototype only uses the core meta-types, as follows.

A Cube archetype is divided into three main parts: Types,
Constraints and Global Configurations. The first two parts
define the administrative goals for the managed application’s
shape (e.g. interconnected component instances) and config-
uration (e.g. deployment settings). These goals represent the
persistent objectives that Cube agents permanently strive to
attain. The third archetype part provides invariant system
configurations (exemplified in the use case).

Archetype Types define the application’s managed ele-
ments, which can be of three core meta-types:

• <component>: a software component type;
• <node>: a type of deployment platform or physical

device where component instances execute;
• <scope>: a deployment area, defined as a group of

nodes of a certain type.
These core meta-types can be extended with domain-

specific meta-types - e.g. <data-mediator> component type.
Archetype Constraints specify various restrictions, or con-

ditions to be met, on the previously defined Types. They
define the limits within which context-sensitive agents can
opportunistically assemble available resources into various
application instances, hence controlling essential application
properties. Constraints can be Unary - involving a single
managed element (e.g. limiting the number of input connec-
tions of a component instance - or simply component); or
Binary - involving two elements (e.g. two components being
connected). Notably, Constraints are directed, which implies
that they only concern the Constraint’s source managed
element, while taking into account an existing destination
element. For example, in Figure 4, the “connect” constraint
directed from GP to HC implies that the Resolver must
make sure that any GP instance is connected to a HC
instance, but not vice-versa. This implies that GP is the
only managed element directly concerned by this constraint.

Each Constraint type is tagged with a number of markers
from a predefined set: check [c], find [f] and perform [p].
Markers indicate the way in which the Resolver must use the
Constraint during the resolution process and consequently
the operations that the corresponding Constraint Resolvers

2A more thorough description of the archetype language is available from
the project’s Documentation and Catalogue sections - http://cube.imag.fr



must support (discussed in IV-C). Generally, [c] indicates
that the constraint must be verified before the concerned
managed element can be validated; [f] indicates that the
constraint can be used for acquiring an instance of the con-
straint’s concerned managed element; [p] indicates that the
constraint may require modifications to the Runtime Model
Part, for expressing solutions in the managed application.
The Cube framework provides a predefined set of core
Constraints, which can be applied to the aforementioned core
Types and any of their extensions:

• <connect v1, v2>[c, f, p]: connect the two components
indicated as values of variables v1 and v2;

• <on-node v1, v2>[c, f, p]: ensure that the component
in v1’s value is on the node in v2’s value;

• <in-components v>[c]: ensure that the component in
v has no more than a maximum number of input
connections (where the max. is given as an attribute);

• <out-components v>[c]: ensure that the component in
v has no more than a maximum number of outputs;

• <in-scope v1, v2>[c, f, p]: ensure that the node in v1’s
value is in the scope in v2’s value;

• <components-per-node v>[c]: limit the maximum
number of components that can execute on the node
in v (where the type of components and the maximum
value are given as attributes);

• <components-per-scope v>[c]: limit the number of
components that execute in the scope in v;

• <self-sizing v>[c, f, p]: replicate components of v’s
type when their input connections are saturated;

• <on-same-node v1, v2>[c]: ensure that the two com-
ponents in v1 and v2 are on the same node;

• <in-same-scope v1, v2>[c]: ensure that the two com-
ponents in v1 and v2 are in the same scope;

• <find-local v>[f]: find on the local node an element of
the type indicated by variable v;

• <create-local v>[f]: create component of v’s type;
• <find-scope v>[f]: find a scope instance of v’s type.

Additional Constraints can be defined as necessary for each
targeted application. They must be matched by correspond-
ing Constraint Resolver (CR) plug-ins.

Finally, the archetype’s Global Configurations provide
system property values shared by all Cube agents - e.g. the
unique resource identifier (URI) of the Top Scope Leader.
Figure 3 partially shows the archetype that defines the data-
mediation example discussed in section III.

C. Cube Resolver

An agent Resolver must constantly ensure that the agent’s
model conforms to the archetype. To validate the model,
the Resolver constructs and solves a directed Constraints
Resolution Graph representing its archetype part, where the
vertices are typed variables (corresponding to instances of
archetype Types) and the arcs are constraints (corresponding
to archetype Constraints). To solve the constraints graph

<archetype id="org.example.cube">
<types>

<scope id="CITY"/>
<node id="SERVER"/>
<node id="GATEWAY"/>
<component id="GP"/>
<component id="HC"/>
<component id="CA"/>
<!-- more types -->

<types>
<constraints

vars="gp:GP; hc:HC; ca:CA;
g:GATEWAY; s:SERVER; c:CITY">

<on-node v1="ca" v2="s"/>
<in-scope v1="s" v2="c"/>
<in-scope v1="g" v2="c"/>
<find-scope v="c"/>
<!-- more constraints -->

</constraints>
</archetype>

<on-node v1="gp" v2="g"/>
<connect v1="gp" v2="hc"/>
<on-node v1="hc" v2="g" priority="1"/>
<connect v1="hc" v2="ca" priority="3"/>
<create-local v="hc" priority="2"/>

Figure 3. Partial archetype for house and city mediators

the Resolver uses a backtracking-based algorithm, trying to
find an acceptable value for each graph variable. When a
candidate value does not satisfy a variable’s constraints, it
is tagged as non viable and stored in the variable’s history.

To solve each Constraint type, the Resolver calls a differ-
ent specific Constraint Resolver (CR). Depending on each
constraint’s markers - [c], [f] and/or [p] - the associated
CR provides the corresponding functions: check(), find(),
perform() and/or cancel(). Check() verifies the constraint on
a variable by assessing the conformity of the variable’s value
(true or false). Find() proposes valid values for a variable,
either from its entire range, or considering given values for
its related variables. Perform() updates the model to reify a
constraint solution; cancel() annuls such operation.

The resolution process is triggered in three cases. First, an
agent detects a model change (e.g. a new component, created
manually). Second, the archetype imposes the existence of
at least one instance of a Type; Cube agents must create it
upon start-up. Third, a Cube agent asks another Cube agent
to “find” a component instance. In all cases, once a managed
element is found, the Resolver determines and validates its
constraints. As a first step, the Resolver determines all the
element’s constraints marked as [c]. For each constraint, it
calls check() on the corresponding CR. If the answer is True
the element is valid. Otherwise, whether a new element value
is obtained or the element remains invalid (i.e. no archetype
solution). To check Binary constraints, a value must be
found for the second element associated to the one being
solved. Hence, as a second step, the Resolver determines
all constraints marked as [f] for this second element, then
calls find() on the associated CRs (in the order given by
the constraints’ priorities). As a third step, when a value for
the second element is found, the Resolver calls perform()
on the Binary constraint’s CR, to update the model. At this
point, the Resolver moves on to solving the second element
and the process restarts recursively from this point. If the
proposed element value cannot be validated, the Resolver
calls cancel() and tries to “find” an alternative value. When
the second element is valid the Binary constraint can also
be validated along with the initial, concerned element.

Figure 4 shows how this resolution process works when
a new GP instance is detected on a gateway. First, the



gp

on-node connect hc

(a) (b) (c)

x1:GP

x2:Gateway x3:HC

gp

on-node connect

x1:GP

x2:Gateway x3:HC

in-scope

x4:City

home1

grenoble

gp

on-node connect

x1:GP

x2:Gateway x3:HC

in-scope

x4:City

home1

grenoble

connect x5:CA

create-local

on-node

x6:Server

in-scope

on-node

server1

ca

Figure 4. Example of Constraint Resolution Graph

Resolver creates a top variable (x1) of type GP and value
gp (the detected instance) - Figure 4-a. To validate x1, the
Resolver retrieves GP ’s [c] constraints from the archetype:
<on-node>- gp must be on a Gateway Node; and, <con-
nect>- gp must be connected to a HC component. To
“check” the <on-node> constraint, a value for the related
variable x2 of type Gateway must be found. Here, x2’s
value is found directly from x1’s node attribute, available
from the model (gp.node=home1). Next, the Resolver calls
perform() on the “on-node” CR, adding gp to home1 in
the model. Since home1 was changed, the Resolver must
“check” its constraints. It retrieves its [c] constraints: <in-
scope>- home1 must belong to a City Scope. As before,
the Resolver first tries to get a Scope value from x2’s
attributes and it finds Grenoble, which is a valid value of
type City. Hence, the “in-scope” CR returns True, then the
“on-node” CR returns True, which validates this branch of
GP ’s resolution graph (green values in Figure 4-b).

To resolve GP ’s <connect> constraint the Resolver must
“find” a value for the x3 variable of type HC. Since it can-
not find this value from x1’attributes, it determines HC’s [f]
constraints: <on-node>, <create-local> and <connect>, in
this order of priority as specified in the archetype. Calling
find() on the “on-node” CR returns no value, since a HC
instance does not yet exist on the home1 gateway. Hence,
the Resolver calls find() on the next CR - “create-local”,
which instantiates an HC component and returns its value.
The Resolver assigns this value to x3 and calls perform()
on the “connect” CR, between x1 and x3.

The Resolver must now “check” the new HC instance
(Figure 4-c). Its “on-node” CR returns True, but its “con-
nect” CR returns False (hc not yet connected to a CA
instance). Hence, the Resolver first finds a value of type CA
for x5. CA only has an <on-node> [f] constraint, placing
it on a Server Node. To find such Node (x6), the Resolver
uses the <in-scope> [f] constraint associated to the Server
Type and obtains server1 in the scope Grenoble of type
City. The Cube agent on the gateway contacts the Cube
agent on server1 for finding a CA instance. The remote
agent constructs a local resolution graph with CA as its top
element (not shown) and starts to solve it. It calls find()

on the local <on-node> CR and obtains a ca value (since
a CA instance already exists). This value is sent to the
gateway agent, which assigns it to x5 and calls perform()
to connect x3 to x5 (remote connection). It then rechecks
x5, which remains valid, hence rendering the proposed HC
instance valid and validating the new GP instance. The
Resolver validates this solution locally and also with the
other participating agents (the one controlling the ca instance
on server1). When the model is validated, the Executors are
notified to reify the solution into the managed application.

D. Essential Principles, Advantages and Limitations

Applications based on the presented approach conform
to a fixed template (defined by an archetype) and support
flexible template instantiations (context-sensitive solutions
determined by agents). This approach offers a compro-
mise between controlling essential application properties and
enabling application survival and adaptation in changing
runtime contexts. Self-organising Cube agents simultane-
ously and progressively find and create flexible application
solutions, which allows the archetype expression process to
scale. Agents do not have to determine when a complete
solution is found before instantiating it. Also they will not
attempt to find globally optimal solutions or to ensure 100%
availability for managed systems. The main target is long-
term survivability, adaptability and viability.

Using archetypes to express functional application goals
renders Cube only applicable to cases where system archi-
tecture can guarantee system functionality. Compositionality
is another essential assumption, asserting that if all archetype
parts are correctly expressed and integrated then the resulting
application is also correct (i.e. conforms to the archetype).
This implies that a global solution can be obtained by
composing local solutions that were developed with minimal
mutual knowledge (i.e. local agent knowledge and Scope
level properties). Both assumptions were considered reason-
able for data-mediation systems considered so far.

With respect to the decidability of the constraint resolution
process, the core constraints and resolvers provided so far
are decidable if the number of available solutions for each
constraint is finite (e.g. a limited number of implementa-
tions can be found for a component type). The resolution
process sequentially addresses each constraint that applies
to a managed element, using a backtracking process to
progressively build and verify the solutions’ tree. Each set
of constraints is decidable if its solution tree is finite. For
each managed element being expressed, once a solution
that meets all its constraints is found, the solution is set in
place and not rolled-back to accommodate other element’s
expression. This “greedy” approach ensures the convergence
of the archetype resolution process, as the application grows
monotonically towards a complete solution. Regarding the
archetype’s expressiveness, the extensibility of the provided
language and associated resolver should ensure support



find-scope

WP HC

connect
on-same-node

GP

Gateway

EP

connect
on-same-node

Server

CA
 connect
 in-same-scope CC

connect
NAconnect

Datacenter

City Central

in-components (10)

connect
on-same-node

on-node

C
o
m
p
o
n
e
n
ts

N
o
d
e
s

S
co

p
e
s

self-sizing

instances-per-scope (1)

find-scope

on-node on-node

on-nodeon-node

in-scope
in-scopein-scope

self-sizing

find-local

in-components (50)

Figure 5. Complete constraints graph for use case archetype

for a large spectrum of domain-specific archetypes. The
applicability of the proposed “greedy” resolution technique
will have to be analysed case by case for each extension.
Similarly, the stability of the resulting application will have
to be studied depending on the context-sensitive adaptation
of included Constraint Resolvers - this is a “classic” problem
in autonomic and control systems. Supported uncertainty
sources include the discovery of concrete Type instances that
were not known at system design time - e.g. new component
implementations or machines; dynamic communication net-
works impacting discovery; and evolving data flow sources.

V. USE CASE

A. Home Resource Monitoring Archetype

Figure 5 provides a graphical view of the complete use
case archetype. The archetype specifies two Scopes: City -
regrouping all Nodes in a city; and Central - regrouping all
Nodes of the national data centre. It also specifies three Node
Types - Gateway, Server and Datacenter - and seven
Component Types - Gas Probe (GP ), Water Probe (WP ),
Electricity Probe (EP ), House Cost Calculator (HC), City
Aggregator (CA), City Calculator (CC) and National Ag-
gregator (NA). Different instances of the defined Types can
exist during runtime (e.g. Paris, Grenoble and Lyon are
instances of the City Scope Type).

Next, the archetype specifies various Constraints on the
defined Types. It specifies the way Components are in-
terconnected (<connect>) and assigned to Nodes (<on-
node>and <on-same-node>) and to Scopes (<in-same-
scope>). It defines the Node’s inclusion into Scopes (<in-
scope>) and the Scope’s management strategy (<find-
scope>). Notably, it imposes that a single CC instance can
exist in a city (<components-per-scope>). For performance
considerations, it limits to 10 the maximum number of inputs
of CA instances (<in-components max=10>). Finally, for
CA and NA types, it indicates that at least one non-saturated
instance must be available at any one time (<self-sizing>).

B. Self-growing data-mediation chains

When Cube agents equipped with archetype copies are
launched on the system’s platforms, they first self-organise

with respect to the archetype-specified Scopes. Scope Lead-
ers are automatically elected and Node groups are formed
within each Scope. Once the Scope infrastructure is set in
place, Cube agents start creating local Mediator components
and cooperating among themselves to construct distributed
mediation chains. Let us examine this process considering
the use case archetype (constraints graph in Figure 5).

In the Datacenter, the local Cube agent spontaneously
creates the NA Mediator upon its initiation, because of the
self-size archetype constraint specified on the NA Type. This
constraint indicates that at least one accessible component
instance of the concerned Type must be available at any one
time. To validate this constraint, Cube agents create a new
component instance when none can be found or whenever
the existing ones are saturated. The same applies for CA
components on Server machines, meaning that at least one
CA instance is created when the Cube system starts. When
CA is instantiated, a CC component must also be acquired
- found or created - within the same Scope and connected
to the CA instance. As a single CC instance can exist
within any City Scope (“instances-per-scope(1)” constraint
on CC), Cube agents must ask the Scope Leader of their
City Scope for permission before creating a CC instance.
If a CC already exists (i.e. created by another agent), the
Scope Leader returns its reference and the demanding agent
connects its CA instance to it.

Relying on this initial setting, when probes of type EP ,
GP or WP are installed in a home, Cube creates the
corresponding mediation branches to connect them to the
existing mediation graph, as illustrated in previous sections.

VI. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The presented Cube prototype is implemented using
Apache Felix iPOJO3 technology, which runs on an OSGi4

platform. IPOJO relies on a service-oriented component
model where component dependencies are expressed as
service requirements, which are dynamically provided by
other components. Component implementations are pack-
aged as bundles and can be hot-deployed on OSGi Ser-
vice Platforms. Bundles can be deployed from local sites
(e.g. file system) or from a remote repository (e.g. OSGi
Bundle Repository). The Cube prototype capitalises on the
dynamic capabilities of the iPOJO/OSGi service architecture
to implement the different Cube agent modules. Remote
repository and hot-deployment support allows Cube agents
to dynamically find Component Type implementations and
deploy them onto their local platforms. The service-oriented
model enables Cube agents to maintain partially instantiated
applications, where some application services can remain
unresolved (rather than throwing exceptions) until the re-
quired services become available. Finally, Cube agents can

3http://felix.apache.org/site/apache-felix-ipojo.html
4http://www.osgi.org



feature a dynamically extensible architecture, where specific
components (such as Constraint Resolvers or Ms-Es) can be
deployed, instantiated and plugged-into agents at runtime, as
needed to resolve various archetype parts. This enables Cube
agent instances to be individually customised, at runtime,
depending on their actual specialisation (expressed archetype
parts). This helps minimise individual Cube agent overheads.

The presented prototype implements Cube’s core frame-
work - i.e., Resolver and Runtime Model container - and a
set of specific extensions for enabling Cube to express the
use case archetype. Extensions mainly include the necessary
Constraint Resolvers - e.g. “on-node”, “connect” and so on.
Support for Cube agent communication is also implemented
as an internal iPOJO component, currently based on TCP/IP
sockets and easily replaceable as needed.

An initial set of experiments was carried-out in the
described use case. Their main purpose was to validate
the prototype’s functionality in a distributed platform with
respect to the archetype constraints identified so far. As the
archetype and resolution process were the main experimental
targets, mediator components were not actually instantiated
- achieving conforming model parts for each agent repre-
sented the equivalent result. Initial performance measure-
ments taken in this context provide an indication of the
order of magnitude of delays to be expected from an agent’s
resolution process. Most importantly, they indicate the way
in which such delays will depend on the archetype part
sizes and the agent collaboration involved. Most definitely,
large-scale testing on a variety of scenarios and platforms
is required in future work to provide a comprehensive
performance evaluation of the Cube approach. Here, we
mainly discuss which functional parts of the Cube resolution
process are most likely to introduce the delays. At the same
time, since agents work in parallel on separate platforms, we
estimate that delay characteristics will remain similar to the
ones presented here even as the number of agents increases
considerably. Certainly, delays may increase if the number
of agents that must coordinate their actions increases.

Table I
USE CASE SCOPES AND NODES INSTANCES

Scope Type Scope Instance Node Type Node Instance
Central central1 Datacenter datacenter

City
Paris

Server P-server1..3
Gateway P-home1..5

Grenoble
Server G-server1

Gateway G-home1..3

Cube prototype was tested using the configuration de-
picted in Table I. This configuration defines the available
instances corresponding to the archetype-defined Scope and
Node Types. For example, we defined one instance of the
“Central” Scope Type - central1 and two instances of the
“City” Scope Type - Paris and Grenoble. Regarding Node

instances, we provided one platform of “Datacenter” Type
for the “Central” Scope instance and so on.

The actual testing platform consisted of three PCs con-
nected via a local area network (LAN). The first PC rep-
resented the Datacentre Node (Pentium 4 2.0 GHz, 1 Gb
RAM). The second PC (Core Duo 1.83 GHz,3 Gb RAM)
hosted all Node instances of the Server Type (P − server1
to P − server3 and G − server1), each one running in a
separate OSGi instance (and process) to simulate different
machines. Finally, the third PC (Core 2 Duo 3.06 GHz, 4
Gb RAM) hosted all Node instances of the Gateway Type
(P −home1 to P −home5 and G−home1 to G−home3),
running in separate OSGi instances. All OSGi instances ran
on an OpenJDK 1.6 JVM executing on a Linux Ubuntu OS.

Figure 6 depicts the average times (over 10 runs) that
Cube agents on these platforms took to initially self-organise
into Scopes and then to assign and resolve their archetype
parts. Measured execution times only represent the time
needed for agents to determine and resolve their local
constraint graphs. They do not include the technology-
specific delays for the actual creation and interconnection
of Mediator instances once their models are validated.

Let us analyse the performance of different agents depend-
ing on their hosting Nodes and expressed archetype parts.
With respect to initial Scope constitution, we notice that
agents join their Scopes within a rather small lapse of time
(less than 20 [ms]). This time will essentially depend on
the communication delays between the agent and the Top
Scope Leader, as well as on the Top Scope Leader’s load at
the time the agent contacts it. The archetype partition and
resolution times for different Cube agents was also quite
small (less than 200 [ms]) and will also critically depend on
communication delays with Scope Leaders and other agents.
Most notably, an agent’s resolution delay will increase if it
depends on the resolution process of another agent, as it must
wait until this other agent validates its own local model.

Average resolution times were approximately the same
across agents running on home gateways, since they all

Figure 6. Average times of scope and archetype part resolution



performed similar tasks. Considering the servers, the average
time on P − server1 is greater than that of similar servers
in the Paris Scope. As this server was always started first,
it had to create the CC component that must be unique
in the Paris Scope and connect it to the NA component
managed by the datacentre agent. The other Paris servers
simply connected their CA components to the existing CC.
A similar situation can be observed for G−server1, which
is the only one in the Grenoble Scope. Finally, the resolution
time is the smallest for the datacenter agent, since it must
only create the local NA instance.

VII. RELATED WORK

An exhaustive picture of related work is difficult to
provide, since the presented approach finds itself at the
intersection of several research fields and sub-fields. We
focus on positioning Cube’s autonomic lifecycle manage-
ment approach considering two key engineering currents: i)
“traditional” model-based approaches (top-down), including
Model Driven Engineering, model-based self-deployment
and self-management; and, ii) relatively “recent”, nature-
inspired approaches (bottom-up), including self-organising
systems, emergent control or embryomorphic engineer-
ing. Cube positions itself in-between these poles, using
archetypes to control the results of self-organising processes.

Model-driven top-down solutions typically define an ar-
chitectural model of the targeted application and employ an
automatic interpreter for generating, deploying, instantiating,
(re)configuring and/or repairing a distributed application. In
this context, architectural models can be concrete - defining
the precise application to instantiate and manage (e.g. [7]
and [8]); or abstract - only indicating the application types,
type dependencies and or general constraints (e.g. [9], [10]).

Automatic model interpreters can work whether off-line -
for initially creating model-compliant application instances
(e.g. [8]), or online - for providing dynamic management
functions (e.g. [7], [9] and [10]). Cube uses abstract architec-
tural models (via the archetype) and online interpretation and
expression (via the agents). An important limitation in most
model-oriented approaches stems from centralising both the
model interpretation processes and the Runtime Model of
the resulting application (e.g., [7] and [9]). This limits the
scalability of the targeted application both in terms of the
number of managed components and of the frequency of
required adaptation operations. Cube avoids this difficulty
by employing self-organising agents as interpreters, each
one only expressing limited archetype parts and maintaining
local Runtime Model Parts of application parts.

Seen from the “bottom-up” perspective, this approach
can be viewed as a means of introducing better control
in self-organising and/or emergent systems. Similarly, [11]
proposes to have decentralised processes guided by either
a shared template - i.e. abstract architectural model, or by
a shared recipe - i.e. set of rules. Cube perfectly fits this

category and features important resemblances with existing
solutions that adopted similar approaches - e.g. [10] or [12].
In [10], abstract architectural models are employed to guide
the self-organisation of pre-existing software services into a
global application solution. This approach adopts aggregate
gossiping to exchange and merge partial solution config-
urations among participating processes. When a complete,
model-compliant solution is reached it is used to guide the
actual application self-assembly process. Cube does not try
to explicitly find a global solution before setting it into
practice. Instead, each agent creates a partial solution and
instantiates it as soon as it can be validated. Application
parts can be created (or removed) and plugged-into (or out
of) the existing application later on, without having to restart
the entire self-assembly process. In the Organic Computing
context, [12] introduces the Restore Invariant Approach
(RIA), in which a system’s state is being continually verified
against a predefined invariant (i.e. constraint or ’behaviour
corridor’) and reconfigured whenever it deviates from its
viability space. Cube imposes archetypes as a particular kind
of invariant and provides a reusable and extensible definition
language and framework for implementing this solution.

Cube resembles certain clustering-based approaches for
decentralised self-management (e.g. [13]), which employ
task fragmentation and coordination among parallel pro-
cesses. In the exemplified load-balancing solution in [13] lo-
cal results combine straight-forwardly into a global solution.
As this cannot be assumed in the contexts we target, Cube
provides specific agent coordination techniques for obtaining
conforming global solutions from multiple local parts.

In the context of “bottom-up”, Nature-inspired research,
several projects adopt concepts from developmental biology,
such as the genotype - phenotype paradigm, as an alternative
means of Software Engineering complex adaptive systems -
e.g. [14] to [18]. Cube provides a concrete framework that
is compatible with these visions, where an archetype can be
seen as a genotype, and agent-created application instances
as phenotypes. Most existing approaches use predefined
behaviours, or rules, to define individual genotypes [14],
[15] or [16]. The parallel execution of multiple agents
implementing such rules leads to the emergence of a de-
sirable system behaviour and/or structure. In some cases,
alternative behaviours are available and can be dynamically
selected in each agent [17]. In contrast to such rule-based
approaches, Cube proposes a goal-oriented solution - an
archetype represents a goal that Cube agents must collec-
tively attain. This approach simplifies system development,
as it allows developers to specify the targeted end-result
system (the what), rather than the means of achieving that
result (the how). Additionally, Cube’s dynamic archetype
interpretation facilitates the creation of adaptable, context-
aware applications, where the execution environment and the
existing application parts influence archetype expression.

Most similar to Cube, [18] proposes a morphogenetic en-



gineering approach for self-growing robots from functional
blueprints. While the idea is similar, Cube targets software
applications where the actual physical shape in Euclidian
space is often of little importance. Additionally, software
contexts raise adaptation challenges that are more diverse
than the element growth and shrinkage in robotic systems.
Finally, Cube must handle system growth as a continuous
process rather than as a single initial event.

VIII. CONCLUSION AND FUTURE WORK

This paper presented an approach for instantiating and
managing distributed software applications via a set of self-
organising agents, controlled by a replicated archetype. The
archetype represents the generic features that will inevitably
occur in all instantiated applications. Each application in-
stance can be unique with respect to its concrete component
implementations, number of instances and deployment on
execution platforms. This solution combines the control
capabilities of “traditional” Software Engineering methods
for ensuring core system properties (i.e. what designers can
know at system design time), with the flexibility of self-
organizing methods for ensuring system survivability and
self-adaption (i.e. what designers cannot predict and must
allow agents to decide at runtime). This approach provides
a possible solution for controlling self-organising systems.

To help implement this approach, we provided a reusable
and extensible archetype definition language and resolution
framework. The current design combines decentralised agent
collaboration (whenever possible to ensure local properties)
with property-specific hierarchical control (to ensure prop-
erties defined over larger Scopes). A framework prototype
was implemented using iPOJO service-oriented component
technology and tested to create a distributed data-mediation
application for resource home monitoring. Initial results
indicate the functional viability of the proposed solution.

Future work will concentrate on extending experiments
to include system self-repair scenarios and evaluate perfor-
mance in large-scale system contexts. In parallel, we also
intend to study existing constraint-resolution engines and
evaluate their applicability within our framework. Finally,
we are interested in exploring alternative solutions to global
agent coordination, possibly replacing Scope-based control
hierarchies with completely decentralised protocols.

REFERENCES

[1] A. Diaconescu and P. Lalanda, “A decentralized, architecture-
based framework for self-growing applications,” in Interna-
tional conference on Autonomic computing ICAC, 2009.

[2] A. Diaconescu and P. Lalanda, “Self-growing applications
from abstract architectures an application to data-mediation
systems,” in IEEE Workshop on Organic Computing, 2011.

[3] A. Diaconescu, D. Bassem, and P. Lalanda, “Self-growing
software from architectural blueprints,” in Morphogenetic
Engineering Workshop MEW, 2011.

[4] R. J. Anthony, “Emergence: A paradigm for robust and
scalable distributed applications,” in International Conference
on Autonomic Computing ICAC, 2004.

[5] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Trans. Comput.
Syst., vol. 23, 2005.

[6] H. Song, G. Huang, F. Chauvel, Y. Xiong, Z. Hu, Y. Sun,
and H. Mei, “Supporting runtime software architecture: A
bidirectional-transformation-based approach,” J. Syst. Softw.,
vol. 84, no. 5, 2011.

[7] S. wen Cheng, A. cheng Huang, D. Garlan, B. Schmerl, and
P. Steenkiste, “Rainbow: Architecture-based self-adaptation
with reusable infrastructure,” IEEE Computer, vol. 37, 2004.

[8] OMG, “Deployment and configuration of component-
based distributed applications specification,” 2006. [Online].
Available: http://www.omg.org/spec/DEPL/4.0/PDF

[9] A. Dearle, G. N. Kirby, and A. J. McCarthy, “A framework
for constraint-based deployment and autonomic management
of distributed applications,” International Conference on Au-
tonomic Computing ICAC, 2004.

[10] D. Sykes, J. Magee, and J. Kramer, “Flashmob: distributed
adaptive self-assembly,” in Intl. Symp. on Software Engineer-
ing for Adaptive and Self-Managing Systems SEAMS, 2011.

[11] F. Dressler, Self-Organization in Sensor and Actor Networks,
Wiley, Ed., 2007.

[12] F. Nafz, H. Seebach, J.-P. Steghfer, G. Anders, and W. Reif,
“Constraining self-organisation through corridors of correct
behaviour: The restore invariant approach,” in Organic Com-
puting A Paradigm Shift for Complex Systems, 2011.

[13] L. Baresi, S. Guinea, and G. Tamburrelli, “Towards decentral-
ized self-adaptive component-based systems,” in International
workshop on Software engineering for adaptive and self-
managing systems SEAMS, 2008.

[14] R. Doursat, “Morphogenetic engineering weds bio self-
organization to human-designed systems,” PerAda Magazine:
Towards Pervasive Adaptation, 2011.

[15] M. Ulieru and R. Doursat, “Emergent engineering: a radical
paradigm shift,” Int. J. Auton. Adapt. Commun. Syst., vol. 4,
no. 1, pp. 39–60, Dec. 2011.

[16] R. Nagpal, “Programmable self-assembly using biologically-
inspired multiagent control,” in International joint conference
on Autonomous agents and multiagent systems, 2002.

[17] K. N. Lodding, “The hitchhiker’s guide to biomorphic soft-
ware,” Queue, vol. 2, no. 4, pp. 66–75, Jun. 2004.

[18] J. Beal, “Functional blueprints: an approach to modularity in
grown systems,” in Intl. Conf. on Swarm Intelligence, 2010.


