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Abstract—System integration from sub-systems has always
been a major engineering problem, which is progressively ex-
acerbated by (1) sub-systems becoming more diverse, self-* and
autonomous (2) systems operating in open environments, with
third-party sub-systems joining and leaving unpredictably, (3)
system (self-)integration being an ongoing process, increasingly
needed at runtime. The fact that this problem occurs more
and more often, as systems are built increasingly by compos-
ing existing sub-systems, requires rigorous, reusable integration
solutions to replace ad-hoc approaches. In a complex world of
uncertainty and change the new system integration paradigm
must feature two main characteristics: support for a system-
of-systems approach to manage complexity, and support for
a high-level relation between sub-systems to manage diversity,
uncertainty and dynamics. We propose a conceptual modelling
solution combining holonic principles with goal-based relations.
We highlight the key properties of holonic designs that support
a systems-of-systems approach. We then specify the high-level
relations between holonic sub-systems as goal-oriented requests
and replies. Argumentation is grounded via concrete examples
from existing complex systems. The proposed paradigm paves
the way for future methodologies and tools for designing the
next generation of socio-technical and cyber-physical systems.

I. INTRODUCTION

The complexity of Information and Communication Tech-
nology (ICT) systems, and hence of their engineering and
management processes, stems from aiming to fulfil multiple
(conflicting) objectives, for different authorities, at various
scales and time spans; while consisting of a large number of
diverse and dynamic entities; and having to operate in complex
environments. System development is increasingly replaced by
system composition from existing entities (e.g. components,
services, or entire systems). This process is being progressively
pushed into the runtime for adapting systems to evolving goals
and dynamic environments [1]. The task is more challenging
still as integrated entities are more autonomous, may join and
leave the system unpredictably, or update their behaviour, e.g.
via self-adaptation or self-expression [2].

In a complex world of perpetual change and uncertainty,
a new integration paradigm is needed to enable systems to
self-compose and self-adapt at runtime, potentially from self-*
sub-systems. As no paradigm occurs in a vacuum, we converge
concepts from software engineering (SE) – e.g. requirements
engineering, component and service models, and systems of
systems; artificial intelligence (AI) and multi-agent systems
(MAS) – e.g. problem solving and dynamic organisation of
autonomous entities; and complexity science – e.g. holonic

systems; to propose a novel paradigm based on a conceptual
model that helps understand, analyse, design and communicate
about engineered complex systems, in a uniform way, and at
a high abstraction level, which nevertheless lends itself to a
transformation into concrete system architectures.

The proposed solution relies on three key aspects: holonic
structures, goal-oriented relations, and a resolution method
for finding holonic structures that meet stakeholder goals.
Holonic structures are encapsulated hierarchies with particular
properties that help manage their complexity. We identify
these as: internal semi-isolation, external abstraction and
graduated reactivity across holonic levels. Goals represent
abstract points-of-reference that self-* systems aim to achieve.
Stakeholders - e.g. users, owners, designers or other systems
- request target goals from a system, which aims to find
the system-of-systems composition that achieves the goals.
Each system in the composition provides target goals to its
requesters and requires from other systems cause goals (i.e.
which help provide its target goals). Finding the system com-
position that resolves a target goal is a recursive search process
(involving intra-system goal transformations and inter-system
goal requests and replies). Each step adds more systems to
the composition, transforming target goals into cause goals,
until reaching a set of leaf systems that can achieve their
target goals without further cause goal requests. This process
consists of (self-)sub-processes that can propagate top-down
and/or bottom-up, in parallel, through the system of systems.

We contend that the structure of the system of systems
should be holonic [3], [4], in order to address the limited
rationality problem [5] of its (self-)integration search process
(by reducing the combinatorial space of system compositions
and offering satisficing, or “good enough” solutions, rather
than optimal ones that arrive too late). It can also help prevent
oscillations among the self-* processes of different systems
(by tuning their dynamics to achieve progressive reactivity).

We illustrate and support this conceptual proposal via four
concrete case study examples from a decentralised Community
Energy System. The proposal is hence limited to concepts that
we could identify and generalise from previously published
engineered systems. In previous work we explored particular
aspects of this broad challenge - e.g. a holonic architecture
in smart grids [7] and self-governing communities [8]; goal-
oriented self-growing systems [9]; conflict-resolution design
patterns [10]; and, self-integrating feedback loops [11].



We do not claim here to offer a complete solution to the
broad problem of system self-integration, but to propose a
conceptual way to: i) structure the problem so as it can be
split into (top-down) and/or composed from (bottom-up) sub-
problems; and, ii) allow for alternative solutions to be explored
for each sub-problem, recursively and in parallel. Many ques-
tions remain on the precise definition of this process, which
will also vary, case by case. Here, we define this process
generally, based on cross-domain observations, and argue that
if it produced holonic solutions, then it would be more efficient
and create more viable systems, when complexity raises.

Concretely, the purpose of the goal-oriented holonic model
is, firstly, to provide a viable base to help users, analysts and
engineers to better understand, represent, analyse, design and
communicate about complex systems, in an uniform way, at a
high-abstraction level. Secondly, it is to provide a foundation
for future methodologies, tools and technologies for develop-
ing and controlling self-integrating systems of (self-*) systems.

II. CONCEPTUAL MODEL OVERVIEW

To facilitate the explanation of the goal-oriented holonic
model, we take a ‘holonic’ approach: first provide an overview
of the main concepts and their interrelations (this section); then
detail each one in a dedicated section (sections III to V), and
finally exemplify them in section VI. When designing actual
systems, further specification is needed for many concerns
e.g. conflicts, negotiations, self-* processes, organisations,
standards, knowledge and learning. These represent research
areas in themselves, and are out of the paper’s scope. We
aim here instead to provide a conceptual model for facilitating
the understanding and design of solutions for (self-)integrating
these aspects (dynamically) in a decentralised fashion.

The conceptual model relies on three main elements: i)
holonic structures, ii) goal-oriented systems and relations, and
iii) a goal-resolution process that (self-)integrates goal-oriented
systems into holonic structures that meet stakeholder goals.
These concepts are merged into goal-oriented (self-)integrated
holonic systems. In brief, if HGT0 is a holonic system-of-
systems that achieves a set of target goals GT0, then when
this set changes to GT1, the goal resolution process ΠGT1

must find a new holonic structure HGT1 that achieves GT1.
Conceptually, the system of systems undergoes a series of
state transitions: HGT0

ΠGT1→ HGT1...
ΠGTn→ HGTn. We briefly

describe these conceptual aspects next.
Firstly, we adopt holonic principles (III) as key to the

structuring and dynamics of viable complex systems, as argued
by Simon [3], [5] and Koestler [4]. The relevance of these
works to self-adaptive and self-organising systems was also
identified in [12]. This paper analyses Simon’s principles from
an engineering perspective, to identify the reasons behind
their criticality. From a purely topological outlook, a holonic
system H is composed of sub-systems, recursively; with no
self-similarity required across levels (like composition in SE).
Still, importantly, they also feature particular properties that
ensure their viability when complexity rises. We identify these
as: semi-isolation of a holon’s internals from its external

environment; abstract external perception of a holon via an
aggregate of its state and behaviour; and, graduated reactivity
across holonic levels. We discuss the implications and ways
of achieving these when engineering complex systems.

Secondly, we consider goals (IV) as first class entities for
system abstraction, since they represent reference points to
reach in self-* systems where everything else can change; even
if goals may also change. Goals also offer a uniform way to
model interactions between highly diverse systems, via goal
requests and replies, and hence enable their (self-)integration
into systems of systems. Based on such goal-oriented relations,
the system of systems that achieves the stakeholder’s target
goals GT can be modelled as a directed goal dependency
graph (GDG), or network: NGT =< GT , P > with target
goals GT as the root nodes and P a set or paths that
lead to the achievement of GT . A path is a list of goals
p =< g0, g1, ..., gn >, the first one being the target goal; and,
for any adjacent pair [gt, gc] that is a sub-path of p, and for
any p ∈ P , we have that cause goal gc causes target goal gt.
Several paths connecting different cause goals to target goals
may be interrelated (e.g. contribute to the target goal together).
Some cause goals can belong to several paths leading to
different target goals; and may impact other targeted goals
negatively (conflict). Goals at ‘lower’ abstraction levels can
cause goals at ‘higher’ levels and vice-versa. Each path must
be mapped to an actual system implementing it (i.e. linking
cause goals to target goals); a system can be mapped to several
paths. Since paths are contained within each other, so can
systems encapsulate other systems. This results in a system of
systems interrelated by the GDG, denoted as HGT (IV-A).

Thirdly, we define an abstract system (self-)integration pro-
cess, which, when given a set of target goals GT , must resolve
them by finding a system of systems composition HGT – i.e.
generating a GDG NGT and its system mappings (to simplify,
we ignore mappings in the following as tightly linked to the
paths they implement). We use the append operator ++ to
return a concatenated path of two input paths; and the last(p)
operator to return the last goal of path p (leaf). Then we
inductively define the GDG creation process as follows. In
the first step P 0 := < GT >; the GDG only contains the root
nodes GT and so we only have singleton paths containing
these nodes. At each next step, a process π takes the last
goal of each path, computes their cause goals, and appends
them to the paths: P i+1 := {p + + < gc >| ∃p ∈ P i.∃gc ∈
Gc.last(p) = Gt ∧ π(Gt) = Gc}. At the end of each step,
the last cause goals become target goals for the next step (i.e.
systems that can target them were found). The process repeats
until it produces no more cause goals to extend the paths:
Pn+1 = {}, where n is the number of steps for creating the
GDG (longest path, or chain). The complete set of paths P
is the union of all paths in steps 0 ≤ i ≤ n, P = ∪P i.
This process can be executed top-down (e.g. via goal splitting
and refinement) or bottom-up (e.g. via self-organisation and
abstraction); and often both ways, in a vertical multi-level
feedback-loop (i.e. a yoyo process [13], [14]). From this
process we can define the set of processes ΠGT that describes



each state transition, which transforms one holonic structure
into a new one HGT , that achieves GT .

Intuitively, when a GT is requested from a system, it
generates a set of request chains, each system mapping its
target goals to cause goals and requesting these from other
systems, as above, hence forming the GDG NGT . Once this is
completed and the resulting system of systems HGT executes,
it results in the corresponding set of reply chains, where
accomplished cause goals actually cause the target goals.
When a cause goal fails to achieve a target goal (as per runtime
evaluation), the request process restarts from that point. Each
(self-*) system in HGT performs these processes in parallel.

We refer to this process as goal resolution. In AI, it is
a problem-solving process, e.g. [15]. In “traditional” SE, it
is a manual offline process transforming system goals into
technical requirements [16], design and implementation. In
service-oriented systems, it relies on dynamic service binding
(matching provided/required interfaces). In MAS, it is similar
to mapping of goals to organisations (i.e. roles and relations),
and then of roles to agents that can fulfil them [18], [19], [17].

III. HOLONIC STRUCTURES. PROPERTIES AND BENEFITS

This section introduces holonic structures, as observed in
natural systems, and emphasises key properties ensuring their
viability in complex environments (drawing on Simon’s work).
We then show how goal-oriented designs (section IV) can help
achieve these properties in engineered systems (section V).

A. Holonic System Overview

Holonic systems feature an encapsulated hierarchy structure
where systems (or holons) are both composed of sub-systems
and part of supra-systems [3], [5]. Each holon is a semi-
autonomous entity playing a double role [4]: a self-sufficient
whole controlling its parts; and a dependent part of a supra-
system. In some cases, sub-holons can simultaneously be part
of several holons. In addition to these structural characteristics,
holonic designs may feature specific properties that are key to
system development and adaptation when complexity rises.

B. Properties and Benefits of Holonic Structures

1) Viable holonic complexity from simplicity: Holonic sys-
tems are more likely to achieve viable structural and functional
complexity (i.e. they can achieve their goals or survive) than
other organisations, since their complexity can be built pro-
gressively based on combinations of simpler, viable, structures
and functions; and rebuilt from intermediate composites, when
current formations fail, rather than restarting from scratch (Cf.
the watchmaker’s analogy in [3] or [5]).

In engineered systems, this allows designers to concentrate
on one component at the time and to reuse basic components
and intermediate composites across systems. Complexity is
built by integrating more complicated composites. Similarly,
in natural systems, evolution only has to “come up with”
stable compositions based on simpler ones, and then find ways
to combine these into new composites; recursively. This is
much faster than evolving complex systems directly from basic

elements. When this leads to dead-ends, composites can be
dismantled and alternative ones tried-out at each level; via a
partial roll-back process rather than starting from scratch. In
self-* systems, this can enable the progressive integration of
self-* processes into coherent stable composites.

2) Holonic encapsulation and semi-isolation: The internal
entities of each holon can be partially isolated from the
external environment (e.g. peers or supra-holons). Their in-
teractions with the environment are limited to a well-defined
range of exchanges (e.g. in/out-put types). This creates a
semi-controlled environment within each holon, diminishing
environmental unpredictability for internal entities and hence
facilitating successful adaptation to a limited inner state space
[6]. Of course, this limits the holons adaptability; and if the
isolation is breached, the holon can be corrupted or destroyed
(like most systems). When holons can function autonomously,
in complete isolation, if needed, their robustness and resilience
can further improve. Here, a holon can be integrated within
a supra-holon (in order to benefit from it, possibly at a cost)
when possible, but can also survive as a standalone system
when needed - e.g. the supra-holon fails. This allows lower-
level holons to survive and self-organise into a more suitable
supra-holon; rather than restarting from scratch. Isolation also
stops cascading failures from propagating through the system.

3) Holonic abstraction: Each holon is influenced by other
holons only in a coarse manner, via an aggregate of their
states and behaviours. While encapsulation limits external
influence on a holon’s internals, abstraction protects external
components from the holon’s details, which are exposed in
aggregate form. This means that a holon can use or rely on
another holon’s aggregate effects, or functions, irrespectively
of how these are obtained (from its internals). This can make
holons less sensitive to changes in other holons internals,
and render their integration more stable. It also facilitates the
development and co-existence of holons with diverse structures
and implementations, as only their aggregate effects matter.
This helps system robustness, as diversity increases chances of
survival in unpredictable environments. It also allows for local
optimisations to specific contexts. Finally, it helps external
observers to represent and reason about the system, as each
holonic level can be specified separately, via the abstractions
of its contained holons and their interrelations.

4) Progressive reactivity across holonic levels : In some
holonic systems, sub-holons are more tightly coupled among
themselves within a holon (more links and/or stronger in-
fluences) than with sub-holons in other holons. The same
applies to the holons within a supra-holon, with respect to
external holons. Consequently, changes and reactions within
a sub-holon propagate faster within the containing holon than
between holons. The same applies between holonic levels, with
lower levels featuring higher change rates than higher levels.

This property can help limit chain reactions and oscillations
through the entire holonic system, since each holon may
stabilise after an internal change faster than this change can
propagate to other holons. If the holons stable aggregate state
does not change, then no impact is felt on the other holons.



If the holons aggregate state does change, then the other
holons must adapt to it, but only after this new state is stable.
Similarly, higher levels only adapt to aggregate changes in the
lower levels, once they have stabilised. In some cases, lower
levels subsequently detect and adapt to changes in the higher
levels, which they have caused in the first place i.e. causing a
yoyo effect. Yet, when these dynamics hold, such oscillations
occur over longer periods and may not cause major instability.

IV. GOALS AS FIRST CLASS DESIGN ELEMENTS

This section discusses the benefits of goals as first class
modelling entities, and introduces high-level goal specifica-
tions and transformations. Section V shows how these can help
achieve holonic properties (section III) in engineered systems.

A. Reference points in a world of change

When everything within and without a self-* system can
change, from its internal resources and integration architecture
to its external environment, we need to set a reference point of
the system. In engineered systems, we argue that this reference
point is the stakeholder’s goals for that system. Therefore,
goals are first class elements in the proposed conceptual model
(which simply means that they are key notions at the model’s
abstraction level). For this, firstly, goals need to be defined
more clearly (goal specification, IV-B); and secondly, a method
must be provided for achieving them (goal resolution, IV-C).

Goal specifications have been studied extensively in SE
to define requirements [16], [20]; in MAS to define agent
objectives [17]; or in AI to define problems to solve [15]. We
converge the goal concepts from these areas and propose the
following informal high-level definition. A goal is an evaluable
property that should be achieved, or a verifiable statement
that can be deemed true (or not), of a state or behaviour of a
system under consideration. Goals can be defined at different
abstraction levels, from high-level declarative statements (e.g.
functional or qualitative services, economic targets, social
values, constraints, policies and norms) to low-level procedural
specifications (e.g. technical requirements, plans, architectural
styles and method calls). Hence, the term goal is here an
umbrella label to include a variety of concerns, signifying
anything that the system’s stakeholder cares about - i.e. the
system’s “raison d’łtre”. In contrast to engineered systems,
natural systems appear to have as their default goal that
of their very existence, survival, and derived sub-goals (like
the zero for natural numbers). This can also occur in socio-
technical systems that self-organise by adding individually-
motivated links between pre-existing systems with no prior
global purpose (e.g. global markets or social networks).

The method for achieving the goal (resolution) must be
determined at runtime ΠGT , by finding the system of systems
HGT interrelated by the goal dependency graph (GDG) that
achieves GT (section II). Figure 1 offers a generic view of
a goal-oriented (self-*) system, which can be (self-)integrated
with other systems to form HGT (Figure 2). Each goal and
its evaluation is depicted explicitly, via a dedicated input and
output port (implying nothing about their actual definition).

Fig. 1. Generic design of a goal-oriented self-* system

Each system has a set of provided goals (which it can pursue)
and a set of required goals (which it needs from other systems
in to reach its provided goals). When a system activates one
of its provided goals (i.e. required by an external entity) this
becomes a target goal for that system. It must then resolve
the target goal by finding the internal actions and the required
goals to activate (which become cause goals). This approach
is similar to the BDI model in MAS [21], where beliefs map
to knowledge, desires to target goals and intentions to cause
goals. Certainly, the system has additional ports, e.g. context
monitoring, negotiations or entity transit in/out of the system.

This architectural view is sufficiently generic to represent
a complex system (e.g. with many stakeholders, goals, self-
* functions and components), a system part (e.g. one control
loop or component), a human actor or organisation, or com-
binations of these. An engineered system is a composition of
(sub-)systems that fit this generic design. The (self-)process
ΠGT that integrates (and disintegrates) these into compositions
HGT that fulfil target goals GT is composed of the processes
π of the systems involved. Each one aims to minimise the
difference between its evaluation and its target goals, by
requiring and evaluating cause goals from other systems,
selected at runtime. Internal processes can range from basic
reflexes (with/out self-learning), to intelligent and self-aware
[22] processes or humans in the loop. This variety does not
change the nature of the goal resolution process, only its
efficiency, and hence can be modelled via a single abstraction.

B. Defining goals in a world of change

At the level of abstraction of interest here, goals should
be well-defined yet minimal (i.e. specify precisely what the
stakeholder wants to achieve; and not more). This focuses on
what to achieve rather than how, leaving maximal flexibility
to the (self-*) sub-systems. Many formalisms exist for goal-
specifications, e.g. modelling of agent intentions, abilities,
commitments, or desires (e.g. i* [20]); requirement engineer-
ing models (e.g. Kaos/Objectiver from Respect-IT1), objective

1Respect-IT: Requirements Engineering & Specification Techniques for IT

Fig. 2. Example of goal-oriented system of systems (holonic)



specification standards (e.g. IEEE-Std-830/1993 standards),
rules, policies, constraint-oriented languages, or domain-
specific formalisms (e.g. [9]). All these are refinements that
should fit into the generic goal model discussed here.

Generally, a goal definition should comprise at least three
parts ([7] for details): G = (Vf , SR, ST ), with Vf a viability
function (which encapsulates both what to achieve e.g. 20
- 23C temperature; and its evaluation criteria - e.g. given a
temperature measure, indicate the degree to which the goal
has been achieved); SR a resource scope (where to achieve it
- over which set of resources is Vf defined and evaluated, e.g.
in a smart home); and ST a time scope (when to achieve it
- over which periods is Vf evaluated, e.g. daily from 7pm to
11pm). Note that the viability function could return a binary
value, a utility measure, or other semantics, e.g. too hot or too
cold. Additional attributes may be defined, like priorities - to
help resolve conflicting goals; or rewards and sanctions - in
case goal-aware systems can choose to pursue a goal or not.

Many goal formalisms also include links between goals
(e.g. positive / negative contribution, AND / OR refinement,
satisfying / denying, dependency, or conflict links e.g. [16]);
and between goals and the entities that fulfil them (e.g. agent
responsibility or wish links to goals). These are compatible
with the proposed model, yet separated from goal specifica-
tions and determined at runtime (resolution process). Hence,
target goals are defined by human stakeholders, while cause
goals are derived from these; either automatically or via
human intervention; directly or via trial-and-error; top-down
or bottom-up, or both. When users define several goals that
have incompatible viability functions and intersecting scopes,
conflicts may arise and have to be handled (use case VI-B).

C. Resolving goals in a world of change

For each system, resolving its target goal(s) GT implies: 1)
identifying the cause goals GC that lead to GT ; 2) finding
systems that provide GC , and sending them goal requests; 3)
evaluating GC as provided by these systems (going to step 2
if they fail to provide); and 4) evaluating the extent to which
GC really achieve GT (going to step 1 in case of failure).

These processes are propagated recursively, each step iden-
tifying further cause goals and the systems that can resolve
them. Each system resolves its target goals either by its own
means (self-action) or by transforming them into further cause
goals; or both (partial self-action, partial goal transformation).
In holonic systems the resolution process can map target goals
to cause goals provided by internal sub-systems, recursively.
This process may be implemented via various techniques, yet
at the level of abstraction of interest here we merely focus on
the goal transformation types that occur as systems achieve
target goals collectively via mutual cause goal requests.

In previous work [7] we have identified two basic goal trans-
formations, and respective reverse-transformations: translation
/ inverse-translation - changing the type of any goal element
Vf , SR or ST (e.g. translating a thermostat’s temperature
target, into an electric heater’s power configuration); and
splitting / composing - changing the values of any goal element

(e.g. dividing a thermostat’s temperature goal over the entire
house, all the time, into temperature goals for each room for
each minute). Combining these operations can result in a plan
with several interrelated cause goals (out of scope). Refining
and formalising goal operations are topics of future research,
as is conflict detection and resolution - e.g. if the scopes of
a thermostat’s temperature goal and a power manager’s cost-
saving goal intersect over an electric heater then it may lead
to incoherent configurations. Introducing a system self-goal,
that may conflict with external target goals allows to model
conflicts between egoistic and pro-social behaviour.

V. GOAL-ORIENTED HOLONIC SYSTEMS

This section aims to discuss the benefits, implications and
recommendations for designing (self-*) systems that feature
holonic properties (III) based on goal-oriented concepts (IV).

A. Overview of goal-oriented holonic systems
Since technical complex systems are engineered for a pur-

pose, merging the goal-oriented paradigm with the holonic
structuration principles - giving rise to goal-oriented holonic
systems - can capitalise on the benefits of both approaches.
Each (self-)integrated holon has at least one target goal (or
mere existence by default), achieved via a composition (linear
or non-linear) of cause goals provided by its sub-holons.
When holons belong to several supra-holons they may receive
conflicting goal requests. Holonic designs may have several
semantic implications concerning holons at higher levels with
respect to lower levels: i) authority - higher priority of goal
requests; ii) scope - larger field of view and/or action; and iii)
abstraction - coarser granularity for observation, modelling
and action. These aspects are typically interrelated.

We focus next on how system engineers can aim to achieve
the properties identified in section III for holonic designs.

B. Engineering for Holonic Benefits
1) Complexity from simplicity via explicit goals: Com-

partmenting system functionality into interrelated self-
encapsulated components is a well-known “divide and con-
quer” engineering technique. It is also the source of severe
system integration issues, especially during runtime. Making
holons goal-oriented, with well-defined provided and required
goals, facilitates this task via (dynamic) goal-based system
interconnections (goal matching). Goal-orientation allows for
both: i) top-down goal translation and splitting into finer-grain
goals, plans and actions; and ii) bottom-up goal composition
and (re)definition. Both processes may occur simultaneously,
within each holon, and between holons. Bottom-up processes
may lead to the formation of smaller-scale sub-systems, that
provide intermediate goals, which can then shorten top-down
resolution processes that require these as their cause goals
(goal publication, finding and dynamic matching are out of
the paper’s scope). Each holon evaluates and adapts its internal
sub-holon organisation and implementation so as to meet its
target goals (e.g. replace failing sub-holons or reorganise).
Advanced holons may also justify the cause of goal failures to
their requesters and suggest alternative goals or external help.



2) Encapsulation and semi-isolation via border control: In
engineered systems semi-isolation can be achieved by encap-
sulating holons into a special-purpose container, or membrane,
which defines a clear boundary between the holon’s internals
and its external media [6]. Border control mediates and regu-
lates the holon’s inputs and outputs - e.g. acceptable incoming
and outgoing goal requests, evaluations, or sub-holons. The
membrane can also transform the holon’s target goals, resolve
their conflicts, and distribute the results to internal sub-holons
(future work will develop this aspect).

Semi-isolation allows the holon’s internals to fine-tune
and stabilise their self-integration processes, for target goal
resolution, within the space delimited by well-defined provided
and required goals, and influences from the execution context.
This enables holons to develop diverse internal configurations
that best meet the target goals with local resources and within
local environments (also taking into account their self-goals).
In open systems, semi-isolation can prevent the integration
of unknown entities that may be malevolent; hence keeping
high internal trust levels and a more efficient interaction
between accepted members [33]. Surely, if the membrane
is breached, these guarantees no longer hold and the holon
should take appropriate action (e.g. reinforcing the membrane;
triggering an immune response; signalling to external entities;
self-disassembling; and preventing failure propagation).

3) Abstraction via goals: Goal-oriented holons can be
abstracted as entities that reach well-defined goals, in certain
contexts, without worrying about how they achieve this. The
holon’s success or failure, and its usefulness within a supra-
holon’s organisation, is determined merely by its provided
goals and their evaluation. These represent aggregates, or ab-
stract models, of the holon’s capabilities, state and behaviour.

This goal-oriented abstraction helps human administrators,
designers or autonomic managers to model, analyse and com-
municate about complex holonic systems, by focusing on one
holonic level, in local context, at the time. It also helps to
engineer holonic systems since each holon can be developed
and maintained quasi-independently from the others, only
taking into account their aggregate goal-based influences. It
also facilitates the analysis of inter-holon goal dependencies,
to assess the satisfiability of target goals.

The difficult system integration process can, in principle, be
automated and moved into runtime, since the system itself may
be able to search for successful holonic compositions via trial
and evaluation processes, at increasing holonic levels. This
search process is a research topic in itself (outside the paper’s
scope). We reemphasise however that it is much facilitated
by holonic structuring, since intermediate composites attaining
intermediate goals can be reused as intermediate search results.

Combined with the previous feature (semi-isolation via
border control), the ability to represent and interact with
holons via goal-oriented abstractions is key to supporting
interrelations between heterogeneous holons, via standardised
goal models. It hence facilitates their integration into coherent
supra-holons. This allows dealing with local issues locally, and
global issues globally, while (dynamically) finding a balance

between the two. In authority-based hierarchies, this helps to
balance the power between a holon’s supra and sub-holons [8].

4) Progressive reactivity via tuning of self-* processes: In
engineered holonic systems, the self-* processes within holons
must be designed and tuned with respect to each other so
as to ensure progressive reactivity among holons and across
levels [3]. This can be achieved by having goal-requesting
holons obtain goal evaluations (and hence react to these) less
frequently than the rate at which goal-providing holons change
internally. This may be achieved as evaluations rely on aggre-
gate measures that take longer to collect and compute than the
measure-producing processes. This means that the frequency
of reactions increases as holons are farther from the roots of
the goal dependency graph. Among reflex systems, progressive
reactivity may be achieved by interconnecting a holon’s sub-
holons via topologies that favour communication and change
propagation; and sub-holons in different holons and levels
via more seldom links (e.g. community network). This can
be facilitated by border control, which limits link formation
across the holonic membrane; and hence encourages internal
connections. Such tuning should allow self-* processes to
stabilise within each holon, before triggering self-* processes
in peer-holons and supra-holons. Achieving such dynamic
properties is a rich research topic in itself (future work); here
we merely identify it as a key engineering objective.

VI. CASE STUDIES

We illustrate the proposed concepts via four interrelated
case studies, based on previous work with smart micro-grids.
This validates the conceptual model’s applicability to concrete
systems integrating other self-* systems. Briefly, smart houses
in a neighbourhood are equipped with energy producing and
consumption devices, or prosumers - e.g. thermostats, lamps,
solar panels and batteries. Devices are autonomic and can
reach simple goals, e.g. temperature, luminosity, or power pro-
sumption. Houses are equipped with controllers that coordinate
devices to achieve higher-level goals, like comfort and power
targets. Houses are connected to a smart micro-grid, which
must balance prosumption, avoid peaks, and compensate for
any imbalances by prosuming from the main grid.

Each case study highlights a typical issue and illustrates a
conceptual solution based on the proposed model: A) multi-
layer translation from goals to rules to rule-enforcement; B)
goal conflict resolution; C) top-down facilitation of bottom-
up coordination; D) bottom-up goal definition and top-down
goal enforcement. Solutions are not new, they merely ground
the recommendations we make in the paper to existing cases.
For each case study we 1) offer a brief description and 2)
highlight the goal-oriented, holonic properties proposed in the
paper. Goal definitions and transformations are conceptual; the
exact formalisms have to be specified case by case. This aims
to demonstrate the benefits of the presented modelling method.

A. Multi-level translation of single goal in a smart home

1) Overview and selected scenario: the first use case
focuses on a single-goal smart home. It depicts a typical



case of multi-level goal transformation, where each level is
implemented via a distinct self-* process (holon). In most
systems, a descriptive target goal must be translated into a
prescriptive rule set, which must then be enforced into a (self-
managed) production system. Each transformation can self-
adapt at runtime, including the target goal by the user.

Figure 3 depicts a concrete example of such case. Ini-
tially, the user sets a comfort goal for the smart-home (step
1): GCmf = comfort, home, forever). A Comfort Solver
translates and splits this goal into rules for the home de-
vices GR = (rules, devices, intervals), (step 2); also map-
ping the comfort goal to intermediate goals, e.g. tempera-
ture, GTmp = (T , rooms, intervals), or luminosity, GL =
(L, rooms, intervals); and setting their priorities (to simplify,
shown as one translation from comfort to rules in Figure 3).
Rules GR are sent to a Rule Manager to enforce them. It sends
them to the Production system for execution (step 3), where
a centralised home Controller manages device prosumption
(step 4) to meet the rules (e.g. [7]). Device usage results in an
aggregated prosumption for the entire house (step 5, further
discussed in case studies C and D). The Controller provides
comfort indicators and is monitored for rule conformance
(6). The Rule Manager returns rewards and sanctions to the
production system, based on monitored rule conformance
(7); the Controller may adapt its strategy or exclude non-
conforming devices accordingly. Comfort indicators are sent
to the Comfort Solver, which aggregates them into comfort
evaluation estimates (8); then adjusts the rules GR to better
achieve the goal GCmf . It also forwards the comfort evaluation
to the user, possibly indicating the causes of failures. Finally,
the user changes the goal GCmf to a more realistic one (9).

2) Goal-based interactions & holonic properties: Com-
plexity from simplicity is reached here by integrating several
goal-oriented self-* loops: comfort goal adjustment by the
human (formed by steps 9 and 1, for evaluation and action,
respectively); translation of goals to rules (steps 8 and 2); rule
enforcement (7 and 3); and rule-based device management (6
and 4) – this one being itself a hierarchy of goal-oriented self-
* loops (Controller and smart devices). All self-* loops run
and self-adapt in parallel depending on mutual feedback. Each
is designed as a goal-oriented holon, connected together via a
goal dependency graph with GCmf at its root.

Semi-isolation is achieved within each holon by limiting the
kinds of goals it can be required to pursue (e.g. GCmf for the
ComfortSolver, well-defined rules for the Rule Manager and
the Controller). Hence, they can each optimise their internals
for these types of goals. In the Production system, semi-
isolation is also achieved by screening devices before they join
the smart-home, e.g. to ensure they are trustworthy and can
be managed by the Controller. Furthermore, external entities
like grid controllers have no visibility over these devices, for
privacy preservation; unless special permission is given.

Abstraction is reached by representing each holonic level via
its goals: a home is seen from the grid only via its aggregate
prosumption; the home Controller by the Rule Manager only
via its conformance to rules; devices by the Controller only

Fig. 3. Multi-level transformation of goals to rules and actions

via their ability to reach given goals (e.g. temperature and
luminosity); the user sees the smart home via its ability to
reach comfort. This facilitates the modelling and management
of each level: e.g., the Controller uses knowledge on how well
devices achieve goals and not on how they achieve them. This
also allows each holon to reach its goals via a specific internal
organisation, favouring diversity and local optimisation.

Progressive reactivity is tuned so that higher-level self-*
loops (e.g. user updating GCmf ) are slower than intermediate
ones (e.g. translation of GCmf to GR; and rule enforcement),
which are in turn slower than lower-level ones (e.g. device con-
trols). Indeed, if the user changed GCmf , based on perceived
temperature, faster than thermostats could reach a comfortable
temperature, then oscillations may occur. Also, when devices
of known types (e.g. temperature or luminosity regulation)
join or leave the home, only the Controller reacts to take
them into account (detect and manage them). The rest of the
system remains unchanged, unless devices cause changes that
are visible at the aggregate level, like breaking the rules.

B. Multi-goal conflict within a smart home

1) Overview and selected scenario: this use case introduces
an additional goal from an external stakeholder (e.g. grid
manager), creating a conflict with an internal goal. Concretely,
in case study A, this can represent power prosumption rules
that conflict with the comfort rules. This is generalised here
to external and internal rules, showing where the conflict is
addressed from an architectural outlook, to produce a set of
coherent rules for the Rule Manager. The same applies to
cases with multiple (external and internal) conflicting goals;
at different holonic levels. Figure 4 illustrates the two goals
as rule inputs to the same Multi-goal Manager holon and the
self-* process that resolves them.

2) Goal-based interactions & Holonic Properties: Com-
plexity from simplicity is reached by inserting this new holon
between the Comfort Solver and the Rule Manager (in case

Fig. 4. Conflict resolution between internal and external goals



Fig. 5. Top-down facilitation of bottom-up coordination

A). Depending on its complexity, the Multi-goal Manager
can be implemented as a monolithic algorithm with/out self-*
capabilities, various design patterns [10] or a holonic system.

Semi-isolation ensures that the Multi-goal Manager only has
to deal with conflicts inherent in the predefined types of its
input goals and hence can optimise for this limited domain.

Abstraction makes this holon (re)usable as a conflict-
resolution function, irrespectively of its internal design.

Progressive reactivity should be tuned so that the conflict-
resolution implementation reacts to changes in the conflicting
goal inputs faster than these can change; and slower than the
lower-level holon to which the coherent goals are sent.

C. Market-oriented energy distribution

1) Overview and selected scenario: this use case increases
abstraction to the neighbourhood level, where smart houses
are mere prosumers, and illustrates a market-oriented approach
for energy distribution via offer-and-demand price regulations.
This represents a top-down goal definition and enforcement,
via price regulation, which can impact smart home internals
by introducing new conflicts (case B). This triggers bottom-up
adaptation in overall prosumption, which can in turn readjust
the prices (yoyo effect). It is based on an example solution
from the smart grid literature (i.e. PowerMatcher [23]).

Figure 5 depicts a specific scenario within this case study:
each house is requested to reach a user-defined comfort goal
(1). We model each house as a holon, together integrated
into a neighbourhood supra-holon. The smart houses (i.e.
House A and B) translate their comfort goals into prosumption
requirements (2), as in case study A. The neighbourhood holon
aggregates these and forwards the result to a Pricing Authority
(3), which calculates global energy prices (4), which are fed-

Fig. 6. Bottom-up collective goal definition, enforced top-down

back to the houses (5) and to the users (6). Each house (internal
self-* loop) decides to buy/sell energy at the given price or
to update requirements; users may update comfort goals, as
before. Afterwards the actual prosumptions are performed,
measured and balanced, if needed, from the external grid – the
overall system goal is grid stability (not shown for simplicity).

2) Goal-based interactions & Holonic Properties: Com-
plexity from simplicity is reached by integrating self-* pro-
sumers (structured as in A) and regulating their behaviour to
meet grid- and house-level goals. Semi-isolation is achieved
as smart home internals only interact with the environment
via energy prosumptions, bidding requests and prices; their
internal self-* policies do not depend directly on those of other
households, only via the global prices. Similarly, the Pricing
Authority’s internal strategies can optimise its goals (e.g.
profit), based on prosumption requests, while abiding legal reg-
ulations. Abstraction is achieved by representing each home,
and neighbourhood, only via their aggregate bidding requests
and resulting prosumptions. This facilitates the management
of large numbers of diverse households, which may join
or leave the grid without impacting the global management
scheme. Progressive reactivity is tuned so that the times of
the bidding and price-setting self-* processes, and of the actual
prosumption, amount to sufficiently small intervals (0.5s) for
allowing grid controllers to react (i.e. to achieve balance).

D. Self-governing energy commons

1) Overview and selected scenario: this case study dis-
cusses an alternative to energy sharing based on self-
governance. It shows how global goals, e.g. fairness, can be
defined by community members (bottom-up), to balance indi-
vidual goals, e.g. everyone wants to appear better off than their
neighbours, yet also avoid race conditions leading to resource
depletion. Global goals can then be formalised as rules to
regulate member behaviour (top-down) [8]. Evaluations can
then lead to redefining collective goals and rules (yoyo).

Figure 6 illustrates the process for two users (the multi-layer
pattern for translating goals to rules is similar to case A and
hence simplified here). Each user u in the shared neighbour-
hood n wishes to have more or at least as much comfort as
their neighbours (at every instant t): Gu = (better, homeu, t),
(1). They soon realise this leads to escalating conflicts and
hence negotiate (2) to reach equal comfort over medium inter-
vals m, via a collective goal: Gn = (fairness, n,m), (3). Gn

is translated into prosumption rules: GPR = (rulesPR, n, t),
(4), and enforced into each household (5). Conformance to
rules is then assessed (6) and rewards / sanctions distributed.
The effectiveness of the rules to reach the fairness goal
is assessed (7); and the rules updated accordingly. Fairness
evaluations (based on house comfort measurements) are made
available to the collective (8). Finally, each user evaluates
their position with respect to the overall fairness (9); and may
renegotiate (step 2); or leave the collective.

2) Goal-based interactions & Holonic Properties: Com-
plexity from simplicity occurs here by integrating smart houses
within a self-governing community, with multiple goals, where



houses are already self-* systems of systems (A). Semi-
isolation is achieved, firstly, by identifying the community
members that share the collective goal; and secondly, by
having external authorities allow the community to self-
organise and self-govern, without interfering in their local
regulations - as long as they meet external policies and norms,
e.g. constitutional laws. If individual goals evolve and are no
longer represented by the collective goal, the community holon
may be dismantled, yet the smart homes remain.

Abstraction is achieved at the collective level by modelling
each house only via its aggregate energy consumption and
appropriation, and its conformance to the prosumption rules.
The translation of the fairness goal into rules, as well as
their enforcement and monitoring, can be achieved by member
representatives, by electronic institutions, or both - yet this is
not visible at the presented abstraction level. Also, individual
users see the entire collective only via its fairness indicator,
without access to details of other house profiles. At a higher
abstraction level, different communities in the grid may self-
organise based on different rules, resulting in diversity and
plurality across the integrated community grid system.

Progressive reactivity should be tuned so that member
prosumptions are faster than the evaluation of their rule con-
formance; which is faster than the evaluation (and update) of
prosumption rules; faster than the fairness goal management.

VII. RELATED WORK

We have already discussed related work on holonic sys-
tems and goal-oriented engineering when introducing these in
sections III and IV. Here we focus on their current use in
engineered systems. This is a broad subject and we can only
focus here on the topics most directly linked to our proposal -
component and service oriented architectures; systems of sys-
tems; multi-agent systems; and domain-specific applications.

Component oriented technologies aim to develop systems
based on reusable units of composition (e.g. CCM, EJB, .NET,
Fractal). Components are defined and assembled based on low-
level provided and required interfaces; and encapsulated into
containers to mediate interactions and separate functional from
non-functional logic. Typically, all system components belong
to a single stakeholder who assembles them (mostly offline)
to meet technical requirements. Service oriented approaches
add dynamic service discovery, binding and sometimes Service
Level Agreement negotiations among different stakeholders
(e.g. Web services, iPOJO2, Spring3). Still, integration relies
on low-level interface-matching and there’s little support for
dealing with failed compositions (that do not reach goals). At
larger scales, Systems of Systems (SoS) [25] require further
support for multi-authority, multi-goal, heterogeneity, scalabil-
ity and local adaptability. For instance, [26] propose a holon-
oriented approach for systematic composition, where systems
(holons) are specified via services and properties they offer
and require. Then they focus on a concrete code-generation
approach for system composition (offline and online).

2https://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
3https://spring.io

Holonic multi-agent systems (HMAS) have been proposed
to manage MAS complexity [17], [18], [19], [27]. MAS are
goal-oriented, yet typically couple goal-definitions to the or-
ganisations that fulfil them; even if agents are then mapped dy-
namically to organisation roles. In HMAS roles can be played
by entire agent organisations, recursively. A central agent
(gatekeeper or head) represents each level when exchanging
with organisations at other levels. We are unaware of more
generic proposals allowing for decentralised representation. In
MAS for problem solving, hierarchical planning [24] enables
planners to concentrate on major decisions first (higher-level
holons), and elaborate their details separately, later on (lower-
level holons). This is similar to [15], where Wrappings decou-
ple problem definitions from the code selected to solve them;
and each Wrapping can become a new problem, recursively.

Finally, application-specific holonic designs, featuring dif-
ferent degrees of the properties highlighted here, have been
proposed for various areas, including traffic control [28],
manufacturing [29], [30] and smart grids [31], [32], [7].
While they provide valuable experience reports they are ad-hoc
application-specific solutions offering little reusable support.

While these approaches are compatible with our proposal,
none of them alone offers all necessary concepts for a reusable
self-integration model for complex systems. We select the most
useful features form each and merge them into a compre-
hensive model: component-provided and -required interfaces
merged with agent goal-orientation to increase abstraction
and diversity support; dynamic service binding merged with
goal-oriented self-* mechanisms for managing failed compo-
sitions; specialised component containers as means of achiev-
ing holonic semi-isolation principles; and, additional holonic-
inspired considerations on the dynamics of multi-level self-*
systems (limited support from other areas). New technologies
must be built on top of agent and service-oriented platforms to
provide reusable support for higher-level paradigms and func-
tions for dynamic (self-)integration – e.g. goal specifications
and operations; goal-oriented self-integration mechanisms; and
cross-level dynamics analysis and tuning facilities.

VIII. CONCLUSIONS AND FUTURE WORK

This work was motivated by the well-observed trends in ICT
evolution from mainframe computing to Internet of Things
and “disappeared” computer (where computing components
are so closely interwoven with the social fabric that they
become undetectable); from batch computing to cyber-physical
and socio-technical systems; and from functional and non-
functional (QoS) to super-functional (e.g. loyalty and fairness)
requirements. These trends have brought about the necessity to
rethink the principles of system integration, and furthermore,
to bring integration into the runtime and automate it.

The paper proposed a novel (self-)integration paradigm,
based on a conceptual model, including: 1) goals as high-level
entities for modelling, in an uniform way, the reference points
of highly-diverse self-* systems, and of their interrelations;
2) holonic design principles highlighting the key structural
and dynamic properties of viable self-* systems of systems;



and 3) an abstract, decentralised (self-)integration process for
generating goal-oriented holonic systems, capable of meeting
stakeholder goals, in complex environments.

The conceptual model extracts and generalises existing
specifications, models and design principles from related lit-
erature and our previous work. We did not aim to provide a
complete, concrete solution to the challenging question of how
to self-integrate systems of systems that achieve their goals.
This is a broad multi-faceted topic requiring extensive future
research. Instead, the conceptual model proposed here indi-
cates the generic form and properties that the (self-)integration
process and the systems it produces should take. The purpose
of the goal-oriented holonic model is to provide a viable
foundation to future methodologies, tools and technologies for
analysing, developing and controlling self-integrating systems
of (self-*) systems. The core contributions are:

• Identifying viability-enhancing design principles and
their key role for engineering complex systems (motivated
by holonic systems observed in nature);

• Showing how using goals and goal-oriented relations as
first class modelling entities can help represent and (self-
)integrate highly diverse systems in a uniform manner;

• Merging holonic principles with goal-orientation to offer
a novel (self-)integration paradigm and high-level process
for reaching holonic properties in engineered systems.

• Illustrating and supporting the viability of the proposed
conceptual model via four sample case studies from pre-
vious work on decentralised community energy systems.

In future work we aim address membrane designs; for-
malisation of goals and transformations; conflict resolution;
and the dynamics of cross-level goal-resolution processes
(yoyo). Many other challenges remain, including risk analysis,
specific formalisms, self-integration algorithms, learning and
security. We believe that the proposed conceptual model offers
a foundation for integrating such contributions and support
future methodologies, tools and technologies for designing the
next generation of socio-technical and cyber-physical systems.
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