
Towards a service-oriented component model for autonomic management

Yoann Maurel, Philippe Lalanda
Laboratoire Informatique de Grenoble

F-38041, Grenoble cedex 9, France
(yoann.maurel, philippe.lalanda)@imag.fr

Ada Diaconescu
departement INFRES, Telecom ParisTech

75013 Paris, France
ada.diaconescu@telecom-paristech.fr

Abstract—Modern applications are increasingly dynamic
and heterogeneous and their lifecycle is more and more
governed by autonomic managers that are also getting more
and more complex. The purpose of this paper is to present
a service-oriented framework that facilitates the development
and management of dynamically extensible autonomic man-
agers. More precisely, we propose an architecture based on
the opportunistic collaboration of very specialized and coherent
modules called administration tasks. The current framework
prototype has been implemented as a specialized Service-
Oriented Component Model. It allows the dynamic integration
of autonomic tasks and their management based on contextual
evolutions.

Keywords-autonomic management;autonomic managers; ser-
vice oriented computing;framework;administration tasks

I. INTRODUCTION

A decade ago, IBM introduced the idea of Autonomic
Computing in order to cope with the ever growing complex-
ity of modern systems administration. The purpose was to
hide administration complexity by incorporating it directly
in the systems. The approach is very ambitious in the sense
that complexity does not disappear; it has simply been
moved from administration to design, from administrators
to developers. Unsurprisingly, building autonomic systems
turned out to be a challenge for several reasons. First,
it implies to integrate a variety of techniques and tools
in order to collect and filter information, reason about it,
carry on time-constrained actions, evaluate their utility, learn
about failures, etc. The risk, considering the amount of
skills required, is that systems result from a disorganized
tangle of poorly-mastered disparate methods and algorithms.
Good practices, methodologies, patterns and architectures
are required to assist developers in this overwhelming task.
In addition, autonomic managers are also impacted by the
computing environment dynamism. In practice, it is not
possible to precisely define in advance all the management
situations that may occur and some adaptation capabili-
ties are needed at the autonomic manager level. Finally,
autonomic systems must often deal with conflicting goals.
For example self-protection often implies greater resources
consumption, while self-optimization tends to reduce the
use of resources. Decision-making process must be flexible
as the priority between these context-dependant goals may
change.

Our purpose is to assist the development of mid-size to
large-size managers with complex behaviours and goals:
typically complex application or large-system manager. Such
managers proved to be hard to conceive for all the afore-
mentioned reasons: integration of multiple technologies and
tools, disparate and conflicting objectives, hard to predict
evolving management situations. In this paper, we introduce
a service-oriented component model to facilitate the design
and implementation of these autonomic managers. To meet
our objectives, we have defined the concept of administration
task. An administration task is an independent, specialized
and coherent element that achieves one or more management
function. At runtime, these discoverable tasks opportunisti-
cally combine to form control loops. At any moment, the
cooperation can be refined or changed by adding, updating
or removing administration tasks using a service oriented
approach. It is thus possible to change the overall behaviour
or delegate new responsibilities to the manager. Selection
mechanisms help to manage conflict between tasks and goals
so as to ensure manager consistency. Our approach is im-
plemented on top of OSGi for dynamicity and performance
purposes.

This paper is organized as follows. Second section
presents an overview of existing approach for building au-
tonomic managers. Third section introduces our framework
principle. Our architecture is composed of a management
layer, a control layer and an administration layer described
respectively from section 4 to section 7. Implementation of
this approach is described in section 8 with an example.

II. EXISTING WORK

A few projects have proposed generic frameworks for the
development of autonomic managers. While some projects,
including Rainbow[1], focus on a specific adaptation method
such as the architecture adaptation, a large majority of
these platforms concentrate primarily their efforts on the
communication between managers[2] [3]. In practice, most
projects offer little guidance on the design of the manager
internal architecture. The actual architecture of most existing
systems closely follows the MAPE-K[4] model, a logical
architecture proposed by IBM. This architecture, based on
management blocks, cannot always be used directly. Some-
times, an autonomic manager does not have to go through



the whole MAPE-K loop because some of the blocks are
too simple and skipped. Sometimes, these blocks are too
complicated and end up as monolithic elements. This is the
case, for instance, when many management concerns are
mixed in a same management block. In addition, the MAPE-
K architecture provides little guidance for the integration
of several different, eventually conflicting, concerns within
a single manager. Some projects, like Jade[5] for instance,
suggest the implementation of these concerns in separate
control loops, but do not propose clear solutions for the
collaboration between these loops.

Dynamically modifying the management process is often
ignored. It is nonetheless worth noting that some of them,
including Automate[2] or Autonomia[3], allow the dynamic
deployment of new autonomic elements. It is thus possi-
ble to evolve the overall system behaviour. However, the
granularity of deployed elements is usually rather big and
the changes are kind of abrupt and difficult to achieve in
practice. Additionally, Automate is based on a rule system
that can evolve over time. Nevertheless, if it is theoretically
feasible to change these rules dynamically, this operation is
complex considering the low granularity of the rules.

Both SOC and AC are recent and increasingly popular ap-
proaches that can be used together[6]. Usually the autonomic
approach is used to manage service-oriented applications,
for instance for dynamic service orchestration [7] [8]. More
rarely, although suggested, SOC is used to bring dynamism
to autonomic managers - but not at the same level of
granularity as proposed in this paper. There are indeed a few
frameworks for building managers (i.e the decision making
process) using SOC while it is more commonly used for
building autonomic element as a whole. Some approaches
[9] propose to bring flexibility by using Web-services for
building MAPE blocks. Apart from the considerable perfor-
mance cost, the granularity is still important and they offer
little help to manage potential conflicts.

The solution advocated here has similarities with black-
board system[10] or with the TAEMS project[11]. Regarding
the level of abstraction, our administration tasks are rela-
tively similar to blackboard’s knowledge sources. A notable
difference is that, in our solution, control and data are much
more distributed. In particular, tasks communicate directly
with their counterpart and the selection mechanisms are only
involved when necessary. We also propose a component
model that clearly separates the generic aspects from busi-
ness aspects so that development is facilitated.

III. PRINCIPLES

Central to our proposition is breaking down autonomic
managers into a set of simple and specific behaviour that
can be easily implemented and combined opportunistically
depending on the context and goals. Our goal is then to
define the appropriate behaviour encapsulation unit with

adequate granularity, and to support their opportunistic
integration.

With that purpose, our framework is structured around
the notion of administration task. An administration task
is a discoverable, specialized and independent encapsu-
lation unit responsible for providing a specific and co-
herent management function. It offers an homogeneous
integration model for management activities, by featuring
the same architecture and by exposing the same API, irre-
spectively of the achieved control loop . The model homo-
geneity simplifies development by limiting the number of
required technologies. Encapsulating management activities
into functionally-independent and coherent units enables
their reuse and hides the implementation heterogeneity.
Administration tasks are typically coarser grain than a Java-
class or a basic rule, which, if taken separately, makes
little sense. They are intended to implement a complete and
coherent function like information gathering, failure or faulty
behaviours, plan proposal, learning, etc. They are generally
finer grain than any MAPE-K logical blocks, as they focus
only on a particular goal. Tasks can be implemented in
various ways such as fuzzy-logic routines, set of rules, using
a planner or simple procedures.

In our approach, the autonomic manager is composed of a
number of tasks and control loops result from their dynamic
and opportunistic collaboration (figure 1).

Figure 1. The control loops ensue from the tasks’ collaboration.

The tasks are dynamically discovered and assembled for
the detection and resolution of complex problems (possibly
unpredicted). Composition is opportunistic in the sense that
it depends on the runtime conditions. Because the system can
adapt during execution it is then no longer necessary to antic-
ipate in a timely fashion all the management situations. It is
simply necessary to specify the triggering conditions of the
management tasks. Several loops may coexist at any time,
each responsible for achieving a particular management goal.
Tasks can be deployed, discovered, installed, updated or



removed during runtime allowing changes in the manager
configuration and strategies. This is made possible by the
use a service-oriented approach: each task is implemented
as a service-oriented component. The system is event-based:
tasks asynchronously exchange typed data and are endowed
with the capacity to analyse external or internal event to
decide when to be triggered.

The framework is organized into three layers dealing with
different concerns. The management layer includes the
administration tasks and is responsible for the management
of the system. The control layer is in charge of the
tasks organisation, conflict management and tasks lifecycle.
Interchangeable control mechanisms are provided to cope
with conflicts between tasks. Finally the administration
layer offers all the necessary mechanisms to administer
manually or automatically the manager configuration. These
three layers are described in the coming sections.

IV. MANAGEMENT LAYER : ADMINISTRATION TASKS

A. Administration Task Architecture

By providing a homogeneous task model we intend to
clearly separate the concepts that generally belong to auto-
nomic managers from the application-specific aspects that
are developed case by case. To do so, we have broken task
into a number of modules, each dealing with a specific
concern (figure 2): input and output ports deal with commu-
nication, the triggering mechanism specify when a task can
be executed, the coordinator prevents conflicting tasks from
being concurrently activated, the processor implements task
functionality, a statistic module computes usage statistics
dedicated to task evaluation, and ,finally, an administration
module is in charge of configuration and lifecyle manage-
ment.

Figure 2. Task’s sub-modules

Some mechanisms are optional. For example, by default,
the scheduler and the coordinator let all information pass
through unfiltered. Statistics calculation can be disabled.
A minimal configuration should enable the creation of a
manager that requires minimal interaction with the con-
trol layer. We aim to provide various implementations of
these mechanisms to render development more flexible.
Developers can adapt or rewrite them to address specific
requirements. This will consequently lead to the creation of
a library and favour the reuse of redundant functionalities.

1) Communication: Tasks receive and send data via their
input and output ports. These ports are not mandatory:
typically straight monitoring tasks or action-based tasks do
not use these ports. Current implementation favours direct
communication using a service-oriented approach on top of
OSGi for performance reasons. Input Ports discover and sub-
scribe to output ports via a registry. Output Ports then send
data directly until the registry notify task disappearance.
Assigning communication to dedicated modules facilitates
its evolution - e.g. to address distribution-related concerns,
without having to systematically rewrite all the code related
to communication. Developers are free to modify the de-
fault behaviour by providing their implementation: using
a centralized event dispatcher, using Web Service to deal
with heterogeneous technologies, or using a specific MOM
technology such as Joram.

2) Activation: Task activation depends on the scheduler.
Collected data, if any, are analyzed by this module, which
filters them and plans task processing. This module consists
of two parts: a buffer and several triggering conditions.
The buffer stores a copy of the data for as long as they
haven’t been processed. Frequently, it purges obsolete data
considering their type and receipt date. The triggering
conditions are checked whether regularly, by their own
initiative, when new data arrives or as context changes.
They evaluate data relevance and decide if and when they
should be processed. They can equally observe information
and subscribe to context-related events (e.g. current date or
administrative objectives), as well as calculate information
(e.g. number of calls, time since last activation, fixed time
interval, data quantity). The framework provides several
generic and reusable triggering conditions that can be rewrit-
ten or extended as needed.

After the evaluation process, the scheduler produces a
request in the form of a combination of logical operator
(e.g. OR, AND) that defines all the possible sets of data
the task plan to process. This expression is used to express
data dependencies as some of them are not dissociable. This
allows the conflict management algorithm to authorize a
subset of the request only.

3) Concurency: The planned requests execution depends
on the coordinator agreement. Many tasks are potentially
eligible to handle data at any time. The coordinator guar-
antees that task is authorized to execute by consulting the
control-layer selection mechanism. Selection is solely per-
formed when necessary to ensure good reactivity and avoid
excessive communication costs. For this purpose, the expert
configures coordinators with the list of conflicting data types
(or another discriminator depending on the coordinator).
When receiving a request, the coordinator removes refer-
ences to non-conflicting data from it to obtain a negotiated
request. It then sends the latter to the selection mechanism
and the task’s description. The description contains meta-
information set and used by the selection mechanism to



keep information from previous selection. Once selection
completed, each task receives a list of authorized data and
a new state. Concerned data, if any, are removed from
scheduler buffer and are sent to the processor.

Having selection expressed separately allows it to evolve
seamlessly. The reasoning of the mechanisms we have used
is mainly based on data types, task priorities and task states.
We should note here that several selection strategies are
possible - e.g. maximise the number of active tasks or
maximise the number of reports processed by high-priority
tasks. In the selection process, the coordinator can play a
passive role (as described here) or a more active role by
effectively participating in the selection process. When an
active coordinator is involved the selection process becomes
a negotiation.

4) Processing: At this point, data have been collected,
filtered and selected and authorized. At the task’s core, it is
the processor that actually processes the data. Most tasks
adopt one or more of the four MAPE roles: collecting,
looking for problem, finding solutions and applying them.
Additional tasks can play a role in facilitating and coordi-
nating management actions. For instance, mediation tasks
transform produced data without modifying their semantics
and synthesis tasks can be employed when executing tasks
are competing and a compromise must be found. The former
offers the possibility to explore concurrently different solu-
tions and to choose the best or fastest solution. A task may
implement a complete or a large portion of the management
loop. A compromise must be found between high flexibility
provided by functional decoupling; and, functional-assembly
difficulties and performance costs induced by too high
fragmentation.

The processor is based on three data flows. The first data
flow consists of typed and standardized data provided by
others tasks via communications ports as explained here
before. A second data-flow exists between the managed
system’s probes or effectors and the processor. Monitoring
probes and executors rely on the processor for collecting data
and modifying the managed system. The exchanges between
these touch-points and the processor are not standardised.
They depend on the processor algorithm and implementation
and various communication means can be used (e.g. JMX,
sockets, or Web Services). The last data-flow consists of the
set of data the processors read and write to/from a shared
database. This database corresponds to the Knowledge block
of the MAPE-K architecture. It enables tasks to exchange
persistent information, such as the activation of an alarm.
Hence, this reduces the amount of necessary task commu-
nication. Data stored in the shared database are typed.

The algorithm implemented by a task’s processor is rela-
tively independent of the other tasks. It certainly depends on
the available data but has no functional dependence on other
tasks. In particular, it has no knowledge of the number, the
implementation and even the objective of tasks that provide

it with data. The manager assembler and the other tasks
are oblivious of the algorithm’s implementation or tech-
nology used. Still, as with any implementation, functional
dependencies may exist towards libraries, towards services
deployed on the platform or towards services provided by
the platform. The processor is not necessarily implemented
in a single module. On the contrary, it is desirable for the
processing algorithm to be developed based on existing,
well-tested blocks or applications. For this purpose, the task
can whether include, encapsulate and hide such existing
blocks or simply represent a reference towards existing
services. In all cases, complexity is hidden from the expert
that selects the tasks and assembles the manager.

B. Task Lifecycle

The task’s administration module provides unified inter-
faces to manage task lifecycle, obtain its description, manage
its configuration via exposed properties, and provides access
to usage statistics. This information is used to build a
model@runtime[12] detailed further.

The description of a task includes its state and some
meta-information. The lifecycle is made of three states:
configured when a task has a configuration but is not started
or has been stopped, invalid when data dependencies or
functional dependencies are not satisfied, or valid. The valid
states is refined into three more states: when no request is
being processed the task is waiting, as soon as the task is
processing it becomes active and finally if the processing
takes too long the task is considered to be blocked. The
latter is the more interesting as it gives the administration
layer a chance to replace malfunctioning tasks. This state
is determined using a maximal execution delay given by
the task developer or administrator. As explained before the
task description is completed by meta-information set by the
selection mechanism to keep selection-related information
such as a task priority.

To allow task evaluation, a statistical module is launched
at each processor call and calculates information on the task
activity. Hence, the control architecture or the administrator
can decide to replace certain tasks or to modify the selection
mechanism. The selection mechanism can be updated by
changing task priorities, so as to prioritise the execution of
certain tasks. Developers can seamlessly rewrite the basic
statistical algorithm the framework provides by default. The
statistical algorithm collects various information. The current
algorithm calculates the number of task executions, the
quantity of received/processed data per types, the average
task execution time and the number of times a task was
considered blocked.

C. Task types and data types

To ensure that tasks have minimal understanding about
the nature of the exchanged data, data are typed. A data
type includes a unique name and a description. It defines a



set of attributes, where each attribute has a unique name and
a default value. Data are encapsulated into messages, which
are made of two parts: a header and the actual data. Headers
are used to transmit meta-information that can be used to
refine the binding process as well as providing tracking
information used to determine control loops.

A given functionality can be implemented in several ways.
First, from a technical perspective, tasks can be implemented
based on a ”classical” programming language, on rules or
on an existing application (e.g. a planner). It makes sense
to use several algorithms concurrently, planning algorithms
for instance, by introducing them in different tasks, so as
to be able to dynamically select them depending on current
context and requirements. For that reason, we established
a clear separation between the functionality description and
the functionality implementation. The task behaviour is
contractually defined by a task type that does not refer
to any kind of implementation. It specifies the task func-
tionality, the exchanged information and the configuration
properties. It is up to the adaptation layer or the administrator
to choose the best implementation depending on the context.
Providing typing mechanisms is fundamental to ease the
understanding of manager and for adapting it automatically

V. CONTROL LAYER: TASKS ORGANIZATION

The purpose of the Control Layer (figure 1) is to handle
the pool of administration tasks and to control their context-
aware execution.

A. Controller architecture

It is based on a controller, made of several specialised
modules:

• the lifecycle controller is responsible for the discovery
of task implementations and for the creation, configura-
tion, and destruction of task instances. This mechanism
builds a task execution model than enables it to observe
the manager behaviour.

• the communication support (or communication man-
ager) enables tasks to exchange information. The task
communication ports directly rely on this support.

• the selection mechanism (or selection manager) de-
termines the tasks to activate in case of a conflict.
Each task coordinator directly communicates with the
selection mechanism.

• the database allows information sharing. Specifically,
the database can be employed for storing and main-
taining the processing history. The selection algorithm
can equally use the database to get context-related
information. Storing shared information is a facility
provided to the developer. Although direct exchange
is more efficient, practice showed that a standard
method for exchanging and maintaining information
simplifies developers’ work. Certain situations, such as

the presence of punctual events, naturally call for the
introduction of a centralised database.

B. Model@runtime

The lifecycle manager offers monitoring interfaces
for observing the manager behaviour. It produces a
model@runtime [12] of the executed architecture and keeps
it up-to-date. To build its model, the lifecycle manager
relies on the administration modules of each task. The
model contains task information (identifier, type, statistics
and configuration including scheduler, coordinator and ports
configuration) as well as controller configuration (selection
mechanism configuration and general configuration prop-
erties). This model is used by the administration layer to
evaluate and adapt the manager’s behaviour.

C. Conflicts management

The selection manager is not mandatory. In most cases,
developers can build their managers without using a selec-
tion mechanism as soon as there is no conflict management
to be done. However opportunism is at the core of our
approach and the ability to explore and compare different
solutions is important when working with open environ-
ments. Thus, it is possible to deliberately create a system
in which multiple tasks are competing for processing the
same information. In such cases, the choice of which tasks
to execute significantly depends on the context and on the
objectives set by the administrator.

Tasks selection can be implement is many ways. A weak
form of selection is to create a specific task which purpose
is to receive the results of two or more competing tasks and
to select one of them. Another solution is to implement a
direct negotiation between tasks’ coordinator expecting them
to elect the best one. Finally, since the latter approach can be
tedious, the solution our framework implements by default
is the use of an arbiter. Here, all task coordinators (i.e.
one coordinator per task) communicate with a centralised
arbiter, which is part of the framework controller. Each
task coordinator submits a request expressing the task’s
activation requirements. The arbiter receives all the requests
and decides which tasks can activate and which tasks must
remain inactive. We designed the arbiter to be extensible.
The selection algorithm is proposed as a service than can be
easily rewritten or extended. The framework provides several
algorithms - inhibition based, token based, and priority based
- but developers are free to use theirs.

The ability to change dynamically control is an important
feature. It is thus possible to evolve the control from a
weak exploratory solutions to a more robust and static one.
Exploration can be reserved for testing purpose or specific
time-period while robust static control will be deduced from
statistics and learning and use on a day-to-day basis.



D. Composite Tasks

The framework offers the possibility to create composite
tasks. Composite task behaves exactly as a normal task and
can be used seamlessly. A composite is an encapsulation
unit grouping coherent tasks - e.g. tasks that play the same
role, tasks that are in conflict or tasks that handle a specific
problem. They are made of a set of a tasks and dedicated
controller and communication ports.

Enabling the framework to scale gracefully is the first
reason behind the introduction of composite tasks. When the
number of tasks increases significantly or when tasks have to
handle various complex problems, the number of exchanged
data messages may congest the communication support.
Composites handle that problem by limiting messages scope.
In addition, sharing information among multiple tasks by
using a single database can become complicated. Once again
composites limit the scope of shared data by providing a
hierarchical implementation of database.

As each composite has its own selection mechanism,
another important interest of composites is the ability to
implement different forms of control for different subsets of
tasks. For example a weak exploratory control can be used
for specific tasks (e.g. for new tasks) while stricter one will
be used for well-proven solutions.

VI. ADMINISTRATION LAYER: MANAGER ADAPTATION

The administration layer (figure 1) allows the modifica-
tion of the overall behaviour of the manager by providing
necessary tools. The modification of architecture and tasks
configuration is accomplished in two ways :

• Manually: the framework provides administration tools
to allow autonomic system expert reconfigure the com-
bination policy of tasks. Particularly an HMI (Human-
Machine Interface) offers a global view of the manager
using the model@runtime as well as ways to modify
its architecture (figure 3).

• Automatically: a administration module observes and
analyses the functioning of the manager thanks to the
model@runtime provided by the task manager.

Figure 3. HMI allows to modify the manager at runtime.

In our approach, management policies results from the
action of the tasks deployed, from their configuration and

from the configuration selection mechanisms. They are writ-
ten using an Architecture Description Language (ADL) in
a description depicting the desired manager. This description
is then compared with the model@runtime and the frame-
work tries to keep both model synchronized using a model
driven approach.

The administration can be automated using a self-
administration module. This module based its reasoning
on the model@runtime provided by the control layer and
deduces the functioning of the control loop. It may then
add, remove or re-configure tasks as well as reconfiguring
the parameters of selection mechanisms. For example, a
management component identified as defective or inefficient
can be dynamically replaced with an alternative by re-
configuring the tasks that work in concert with him. This
results in an overall behaviour corresponding more accu-
rately to its high-level goals. Auto-adaptation of autonomic-
managers is of course complicated; we only experiment
basic but realistic examples such as detecting and replacing
improperly functioning tasks.

VII. IMPLEMENTATION AND APPLICATION

A. Implementation

We have implemented the described architecture using
SOC technologies and provided different extendable imple-
mentation for each task’s modules. OSGi1 was chosen for
performance reason and because it provides a full admin-
istrable environment for deploying, installing, configuring,
removing components at runtime. It allows direct commu-
nication between services (java direct call) once discovery
has been done.

We implemented tasks as service-oriented components in
order to ensure weak coupling. They can thus be deployed,
installed, used and destroyed without impact on other tasks.
Moreover, we rely on the service oriented component model
iPOJO [13] to bring modularity to task modules. On top of
these technologies, we based the task implementation on a
dynamic mediation framework named Cilia2. It offers an
ADL for the construction of mediators that we derived to
propose a specific ADL in XML (e.g. figure 4).

In our approach the processor is implemented as a POJO
(Plain Old Java Object) while the other modules are im-
plemented as iPOJO handlers. Handlers are independent
components that can be plugged to the component container
during runtime to add new functionalities. This brings ex-
perts the possibility to develop and to extend task modules
without modifying the processor. Many different task types
can be then described on the mere basis of an XML file
describing the composition and configuration of the modules
without any modification to the code. The controller, and
especially the selection mechanisms, has been implemented

1http://www.osgi.org/Main/HomePage
2http://wikiadele.imag.fr/index.php/Cilia



as a service-oriented component to allow modification at
runtime. Their configuration and composition are also de-
scribed using XML files. Managers are administrable using a
GUI, JMX API as well as a basic scripting language. Each of
these methods lets developers create and modify manager’s
configuration at runtime. With nearly 16000 lines of code
the implementation is consequent. Further information are
discussed in our preceding papers[14].

Figure 4. Task’s implementation definition

B. Application

We considered a residential surveillance application and
particularly the part responsible for monitoring intrusions. It
is composed of a set of services that allow remote monitoring
of an apartment and the signalling of suspicious events.
Users subscribe to the home security service. The application
triggers an alarm in the home and informs the home security
service. To do so, cameras are arranged in the rooms and a
video recorder captures and stores images. The application
runs on a OSGi-based home gateway. For convenience, we
used simulated cameras in the following scenarios.

The figure 5 illustrates the behaviour of the application
while using our manager. The x-axis represents time, while
y-axis represents the CPU, memory and battery usage. The
solid line represents the memory, while the dotted line
represents the CPU. Our purpose was to create a manager
responsible for different management concerns and to im-
plement all this concerns progressively. For each one, we
implemented several tasks for monitoring and acting on
various aspects of the application: disk spaces, CPU usage,
user’s presence using its phone IP, camera battery usage,
alarm.

First, we dealt with image storage space: the amount of
possible images is limited by the size of the hard disk. By
default, no management is done and disk becomes saturated.
We implemented several planning tasks to manage storage
depending on alarm. When no alarm is present (i.e. range
0-50, 180-292, and 363-450s) we alternate between com-
pression (square) and removal (cross) of old images. When
compression is used too often and is then not efficient we
switch to removal using a token-based arbiter. We also try to
takes CPU into account. During an alarm, if CPU is too high,

the compress solution is replaced by a smart selection of
images to implement deletion based on movement quantity.
This is the why when CPU is high we use selection at 310s
and 318s, and compression at 358s when it comes back to
normal. When dealing with an alarm, if for some reason,
the memory size crosses a 90% disk threshold, we use the
removal task (at 342s). Of course, the way tasks are selected
can be changed dynamically at runtime by modifying the
configuration of the selection mechanisms.

Second, we managed the frequency and resolution of im-
age taken by cameras depending on alarm. We take account
the layout of the house to extend or limit the ranges of the
cameras in rooms where an intrusion is unlikely (typically
upper floor cameras). This is why, during alarm, the disk
consumption grows significantly faster. The activation of the
camera-management task is represented by a triangle.

Third, we managed to limit CPU consumption by using
different movement detector implementation. When there is
no alarm (i.e. range 0-50, 180-292, and 363-450s) we use
an imprecise but CPU friendly algorithm and when there
is an alarm we use a more precise one. The rhomb show
the activation of the decision task responsible for switching
between implementation. This is why, apart from the period
between 250s and 340s where we simulate a huge CPU
usage, the CPU usage is around 15% when no alarm and
40% when alarm.

We also used this approach to build other control loops.
In particular, we implemented camera calibration, automatic
switch-off of the alarm when user’s PDA’s mac-address is
detected, camera battery management, and automatic choice
of compression algorithm depending on CPU and efficiency.
The use of our approach has permitted to develop each
concern separately. Actually, we have developed many sub-
managers. We were able to re-use a certain number of mon-
itoring and execution tasks along with threshold detection
to construct each of these aspects. We were also able to
separately test and evaluate parts of the control loop. We
showed that this set of tasks could be used simultaneously to
obtain a globally complex behaviour of the manager. Thanks
to selection mechanisms it is possible to achieve a globally
coherent behaviour.

VIII. CONCLUSION

In this paper, we presented a Service Component Model
for developing autonomic managers. We propose to build au-
tonomic managers via the opportunistic composition of co-
herent and specialized modules called administrative tasks.
Our purpose is to obtain an homogeneous and dynamic
model for the integration of autonomic functions. This
approach facilitates the evolution and extension of global
management strategies by supporting the addition, the updat-
ing and the deleting of tasks, including the modification of
the collaboration logic. Importantly, it allows the evolution
of combination policies from very exploratory solutions to



10%

30%

50%

70%

90%

0 50 100 150 200 250 300 350 400 450

Disk1

Disk2
CPU

D
is

k/
C

P
U

 U
sa

ge

T
hr

es
ho

ld
s

Time (s)

CPU
Disk

Alarm
Removal

Selection
Compress zip

Camera
Detector

Figure 5. Using several tasks to manage application

more rigid but controlled ones. It is thus possible for a
testbed to evolve towards an improved and reliable solution.

This framework has been fully implemented as a com-
ponent model on top of proven service-based open source
technologies, including OSGi/Felix, iPOJO and Cilia. These
service-oriented technologies bring the necessary lazy bind-
ing and dynamism heavily used by our approach. Our
framework has been used in collaborative projects in order
to build robust, self-managed pervasive applications.

REFERENCES

[1] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P. Steenkiste,
“Rainbow: Architecture-Based Self-Adaptation with reusable
infrastructure,” Computer, vol. 37, no. 10, p. 46–54, 2004.

[2] H. Liu and M. Parashar, “Accord: A programming framework
for autonomic applications,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews,
vol. 36, no. 3, p. 341–352, 2006.

[3] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S. Pavuluri,
and S. Rao, “Autonomia: an autonomic computing environ-
ment,” in 2003 IEEE International Performance, Computing,
and Communication Conference, 2003, p. 61–68.

[4] J. O. Kephart and D. M. Chess, “The vision of autonomic
computing,” Computer, p. 41–50, 2003.

[5] N. D. Palma, S. Bouchenak, F. Boyer, D. Hagimont, S. Sicard,
and C. Taton, “Jade: un environnement d’administration au-
tonome,” 2007.

[6] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann,
“SERVICE-ORIENTED COMPUTING: a RESEARCH
ROADMAP,” International Journal of Cooperative
Information Systems, vol. 17, no. 02, p. 223, 2008.

[7] P. Deussen, M. Baumgarten, A. Manzalini, C. Moiso, M. Mul-
venna, and E. Ho?fig, “Componentware for autonomic super-
vision services: The CASCADAS approach,” International
Journal On Advances in Intelligent Systems, vol. 3, no. 1+
2, p. 87–105, 2010.

[8] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S. Hallsteinsen,
J. Lorenzo, A. Mamelli, and U. Scholz, “Music: middleware
support for self-adaptation in ubiquitous and service-oriented
environments,” Software Engineering for Self-Adaptive Sys-
tems, p. 164–182, 2009.

[9] S. A. Gurguis and A. Zeid, “Towards autonomic web services:
Achieving self-healing using web services,” in DEAS’05,
2005.

[10] H. P. Nii, “Blackboard systems, part one: The blackboard
model of problem solving and the evolution of blackboard
architectures,” AI Magazine 7(2), pp. 38–53, 1986.

[11] K. Decker and V. Lesser, “Task Environment Centered Design
of Organizations,” AAAI Spring Symposium on Computational
Organization Design, January 1994.

[12] N. Bencomo, G. S. Blair, and R. B. France, “Summary
of the Workshop Models@run.time at MoDELS 2006,” in
Lecture Notes in Computer Science, Satellite Events at the
MoDELS 2006 Conference. Berlin, Heidelberg: Springer-
Verlag, October 2006, pp. 226–230.

[13] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an extensible
service-oriented component framework,” in IEEE Interna-
tional Conference on Services Computing, 2007. SCC 2007,
2007, p. 474–481.

[14] Y. Maurel, A. Diaconescu, and P. Lalanda, “CEYLON :
A service-oriented framework for building autonomic man-
agers,” March 2010.


