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ABSTRACT

Component technologies, such as J2EE and .NET have been extensively adopted

for building complex enterprise applications. These technologies help address com-

plex functionality and flexibility problems and reduce development and maintenance

costs. Nonetheless, current component technologies provide little support for predict-

ing and controlling the emerging performance of software systems that are assembled

from distinct components.

Static component testing and tuning procedures provide insufficient performance

guarantees for components deployed and run in diverse assemblies, under unpre-

dictable workloads and on different platforms. Often, there is no single component

implementation or deployment configuration that can yield optimal performance in

all possible conditions under which a component may run. Manually optimising and

adapting complex applications to changes in their running environment is a costly

and error-prone management task.

The thesis presents a solution for automatically optimising the performance of

component-based enterprise systems. The proposed approach is based on the alter-

nate usage of multiple component variants with equivalent functional characteristics,

each one optimized for a different execution environment. A management framework

automatically administers the available redundant variants and adapts the system to

external changes. The framework uses runtime monitoring data to detect performance

anomalies and significant variations in the application’s execution environment. It au-

tomatically adapts the application so as to use the optimal component configuration

under the current running conditions. An automatic clustering mechanism analyses

monitoring data and infers information on the components’ performance characteris-

tics. System administrators use decision policies to state high-level performance goals

and configure system management processes.

A framework prototype has been implemented and tested for automatically managing

a J2EE application. Obtained results prove the framework’s capability to successfully

manage a software system without human intervention. The management overhead

induced during normal system execution and through management operations indi-

cate the framework’s feasibility.
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CHAPTER

ONE

Introduction

Goals of this chapter:

• The performance of large-scale, distributed systems is complex to understand and man-

age

• The execution contexts and internal behaviour of Internet-enabled enterprise systems

repeatedly change over the system lifetime, rendering initial performance optimisations

obsolete and requiring repeated optimisation processes

• Often there is no single design, implementation or configuration solution that provides

optimal performance under all possible execution contexts

• There is an astringent need for automating the performance management process of

enterprise systems

• Thesis contributions:

– A component-redundancy based solution for optimising the performance of com-

plex software systems

– An automatic management framework for implementing the proposed solution

and dynamically optimising system performance

– A fully-automated framework prototype for the J2EE component technology

– Documented case studies showing how the optimal component design and con-

figuration solutions vary with the component’s execution contexts
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1.1 Background and Motivation

1.1.1 Enterprise Software System Complexity

Businesses are increasingly relying on software systems to manage their data, control their

processes and provide access to their services. At the same time, the growing complexity of

computer applications renders software development and management processes ever more

difficult and costly to implement. For the same reasons, it becomes increasingly complicated

to predict and reliably argue about the enterprise systems’ runtime architectures, associated

functional behaviour and quality-related characteristics. Global system complexity stems from

the complexity of the implemented business logic and the complexity of the supporting mid-

dleware technologies and underlying platforms.

As computer applications are gradually being employed to support everyday life processes

they are required to provide ever more complex functionalities and quality guarantees. Mid-

dleware technologies are commonly being adopted to provide reusable services across en-

terprise systems, including security, persistence and distributed connectivity. This approach

clearly separates the business logic specific to each application from the common middle-

ware services required across multiple systems. Developers can concentrate on building the

application’s business logic, without having to consider the required non-functional system

services. In addition, component technologies have been introduced to further increase the

modularity and reusability of the application business logic and its separation from common

system services. During system execution, the required middleware services are automati-

cally intertwined with the components’ business logic, so as to provide the complete required

system behaviour. The modularity and consequent flexibility and reusability provided by this

solution increases productivity and lowers development and maintenance costs. Nonetheless,

the emergent system runtime behaviour commonly becomes considerably complex and diffi-

cult to comprehend. The runtime composition of the software system can significantly vary

from its design-time architecture, in terms of both the number of instantiated components

and their interconnections. In certain component technologies the actual number of runtime

component instances is generally controlled by the middleware lifecycle services rather than

by the components’ code. In addition, the dynamic characteristics of component-based enter-

prise systems mean that components can be repeatedly updated or that they can interconnect

during runtime in unpredictable ways. Additionally, available system resources and incoming

workloads can significantly vary during a system’s lifetime, potentially having considerable

impacts on its quality characteristics. This consequently multiplies the efforts required to un-

derstand, predict, and control the systems’ functional and quality-related behaviours.

1.1.2 Enterprise System Performance -

Importance and Challenges

The progressive assimilation of computing systems into everyday life places important re-

quirements on the quality characteristics of such systems, including correctness, availability,

reliability, performance, or security. For most enterprise systems, meeting performance re-

quirements can be as important as providing the correct functionality of their advertised ser-
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vices. According to a recent study at IBM1:

”A quick look at almost any current IT survey reveals that optimization ranks

high. More than any other issue, except perhaps for the ubiquitous and unrelent-

ing concern for security, optimization leads the list of issues that the IT commu-

nity cares about.

From a business perspective, the appeal of optimization is obvious and consis-

tent with the goals of any organization – delivering customer value in a timely

and cost efficient manner. It’s a value proposition that’s not lost on the decision

makers across the IT organization. In the day-to-day world of IT, optimization

translates into more efficient use of resources, as well as lowered management

costs.”

Component technologies [91], such as J2EE2 and .NET3 are increasingly being used for build-

ing complex enterprise system. In component-based applications, the individual behaviour

of every component and the collective behaviour of interacting components, in the specific

execution environment, determine the overall application performance. Nonetheless, system

complexity and lack of information on components and their execution platform make perfor-

mance of enterprise applications hard to analyse and predict. In these conditions, understand-

ing, predicting and controlling the resulting system performance or reliability characteristics

becomes a complicated task. The existing component technologies provide little or no support

for facilitating such tasks.

While successfully addressing complex system functionality issues and flexibility require-

ments, current component technologies provide little support for managing the emerging

performance of systems assembled from distinct components. Static component testing and

tuning procedures are typically run in isolation or simulated environments. Although impor-

tant, such procedures provide insufficient performance guarantees for components that are

to be run in diverse component assemblies, under unpredictable workloads and on different

platforms. The environmental conditions in which a component runs as part of a software ap-

plication can periodically change during the component’s lifetime. Such environmental con-

ditions include the incoming workload and the software and hardware resources available to

a component. Changes in these running conditions can significantly impact on a component’s

availability and performance characteristics, including the component’s throughput and re-

sponse times. As such, repeated variations in a component’s execution context can render

initial performance optimisations obsolete.

Often, no single design, implementation and configuration solution exists that provides opti-

mal performance under all possible execution conditions in which an application component

may run [101, 93, 3]. Attempting to predict all possible execution scenarios and accordingly

build optimal behaviours corresponding to each scenario into a single monolithic component

is an inflexible solution. The lack of modularity and separation of concerns implied by such

monolithic designs would make this a costly and risky approach, if at all accomplishable. A

more attainable solution would be to constantly adapt applications at runtime, so as to contin-

1”Self-managing systems. The optimization challenge”, Rob Cutlip, 23 Aug 2005:
www-128.ibm.com/developerworks/library/ac-selfo/?ca=dnt-634

2The Java 2 Platform, Enterprise Edition technology (J2EE), from Sun Microsystems:
java.sun.com/j2ee

3.NET technology, from Microsoft: www.microsoft.com/net
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ually optimise them to variations in their execution environments and variations in their func-

tional and quality requirements. Nonetheless, this consequently implies that complex system

management, configuration, and tuning tasks must be performed repetitively during runtime,

rather than solely before system deployment. Manually optimising and adapting complex ap-

plications to changes in their running environment is a costly and error-prone task. Perform-

ing such processes during system execution in a timely and reliable manner becomes a difficult

task, at best. In consequence, there is a stringent need to provide autonomic system adaptation

and management solutions that decrease the burden on human system managers. Automatic

management processes should assist human administrators in performing common system

adaptation and verification tasks, in a dependable and timely manner. This would allow ad-

ministrators to concentrate on high-level system management goals, rather than worry about

how these goals should be attained via low-level system management processes.

1.2 Thesis Contributions and Scope

The main contribution of this thesis is to propose the use of component redundancy to auto-

mate the performance optimisation of Internet-enabled enterprise systems, at the application

component level. Conforming to this approach, multiple component variants are acquired

to provide equivalent functionalities, but via different design, implementation and configura-

tion strategies. Each component variant is optimised for a different execution context, such as

various incoming workloads, or available underlying resources. The redundancy-based opti-

misation solution is based on knowledgeably alternating the use of the available component

variants, so as to execute the optimal component variant in each execution context. Based on

this, application components are able to adapt their behaviour so as to always be optimal in

their varying execution environments. Performance optimisations are considered at different

granularities, from the local component level to the overall system level. In effect, the entire

software system is able to adapt to variations in its running environment and yield optimal

performance characteristics, at all times.

As a related contribution, several example scenarios were described, implemented and tested

in order to support the proposed redundancy-based optimisation solution. The examples

clearly show the impact that design and configuration choices have on runtime performance

characteristics, such as response times, throughput or resource consumption. Test results

prove that a component’s optimal implementation strategy can decisively depend on the

execution context in which the component runs. The tested scenarios indicate the way the

knowledgeable alternation of several distinctive strategies, optimised for different execution

contexts, can yield better performance in varying execution conditions than any single imple-

mentation strategy could.

A further contribution of this thesis is an automatic management framework for supporting

the redundancy-based optimisation approach. The framework is referred to as AQuA (Au-

tomatic Quality Assurance). AQuA enables component-based systems to fluidly mould to

variations in their execution environments so as to provide optimal performance at all times.

Similar automatic management frameworks exist in the related research areas. AQuA gen-

erally complies with the overall architectures of the management framework specifications

proposed in the literature [54, 72]. Nonetheless, it notably differs from other existing frame-
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works in the way of addressing the particular challenges of the targeted system types.

AQuA’s automatic management process involves monitoring the system and its execution en-

vironment, using decision logic to detect optimal system adaptation solutions and enforcing

optimisation solutions into the running system. In short, AQuA collects system monitoring

data, detects execution environment variations and identifies application performance anoma-

lies. It subsequently identifies possible solutions to the detected problems and accordingly

adapts the application so as to optimise it for its current running environment. This process is

executed in a feedback-loop manner. More precisely, the outcome of an adaptation operation

is detected by the monitoring function and compared with the predicted result, or adaptation

goal. A learning mechanism was specified for enabling AQuA to use the collected monitoring

data for enhancing its knowledge on the managed components and improving its manage-

ment behaviour over time.

The AQuA framework was designed taking into consideration the particular characteristics of

the targeted managed applications and their underlying implementation technologies. Specif-

ically, AQuA was specifically devised to manage enterprise applications built using contextual

composition framework technologies, such as Enterprise JavaBeans (EJB) [80]. The focus was

on managing enterprise systems at the software application component level. Nonetheless,

AQuA can be extended to manage other enterprise system component types, such as middle-

ware services, or application servers, with minimum required modifications.

In order to meet the specific management requirements of the targeted enterprise systems,

AQuA was designed so as to be flexible with respect to the management control topology

used. In other words, AQuA can conceptually implement either a centralised, decentralised,

or mixed (e.g. hierarchical) management control solutions. The reason is that AQuA’s man-

agement capabilities do not rely on a centralised system model. The rationale behind this

choice was that obtaining, analysing and maintaining an accurate model of the runtime appli-

cation would have been exceedingly costly and might have not scaled well in the context of

the targeted managed systems.

Related to the AQuA framework contribution, the thesis also provides a sample frame-

work prototype for managing J2EE enterprise applications. This prototype is referred to as

AQuA J2EE and was built to work with the JBoss application server for J2EE. AQuA J2EE

was built around a modular architecture, providing increased flexibility and manageability to

the prototype’s implementation. As a result, AQuA J2EE can be extended so as to work with

diverse J2EE application servers, other than JBoss, without requiring major design or imple-

mentation modifications. In addition, any of the prototype’s management functions can be

independently extended or replaced, without affecting the other function implementations.

The provided framework prototype features sample implementations for AQuA’s main man-

agement functions, including runtime monitoring, data analysis for performance anomaly

detection and learning, redundant component evaluation, adaptation decision and dynamic

component activation.

The scope of this thesis includes a redundancy-based approach for optimising the perfor-

mance of complex software systems. The thesis aims to clearly describe the proposed solution

and supporting it via documented examples, implementations, test results and discussions.

Nonetheless, the thesis does not attempt to address all the challenges associated with fully

implementing the redundancy-based optimisation solution. As such, providing an optimised,

reliable and fully-functional framework implementation, ready to be applied for managing

any complex system, is out of the thesis scope.
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1.3 Thesis Overview

Chapter 2 provides an introduction to component-based software (CBS) and the J2EE compo-

nent technology. It also presents a general overview of the area of performance management

for complex software systems. The main research directions and associated approaches are de-

scribed and analysed. The existing research efforts towards automating system performance

optimisation are discussed and their applicability and limitations identified.

Chapter 3 describes the proposed solution for automatic performance optimisation and adap-

tation in component-based enterprise systems. The focus is on component technologies based

on contextual composition frameworks [91], such as the Enterprise JavaBeans (EJB) technology

[80]. The presented approach is based on the use of redundant components for dynamically

optimising system performance. The chapter discusses possible scenarios that would bene-

fit from the proposed optimisation approach, addresses the associated complexity and cost

concerns and indicates the solution’s applicability in the context of component-based enter-

prise systems. The solution also proposes an automatic management framework, capable of

administering redundant components, of optimising applications and of meeting system per-

formance requirements. The framework achieves its goals by automatically and repetitively

monitoring, evaluating and swapping the available redundant components during runtime.

The main roles and functionalities of the framework’s main logical modules are being de-

scribed.

Chapter 4 describes the design and implementation details of proposed optimisation solution

and framework. It explains the implementation logic and technical choices made for build-

ing each framework function, including the system monitoring, anomaly detection, learning,

component evaluation, adaptation decision and component activation.

Chapter 5 is allocated to presenting the experimental work of the thesis. The goal is to validate

the proposed optimisation solution, the management framework and the provided prototype

implementation. The chapter describes the investigated example scenarios, testing procedures

and the obtained results. Two implemented example scenarios are described in order to indi-

cate the potential benefits of the component redundancy based solution. Results from testing

the framework prototype’s automatic management capabilities on one of these examples are

shown and analysed. Preliminary test results from the framework’s data analysis and learning

capabilities are presented. The chapter discusses the significance of the obtained experimental

results for supporting the thesis proposed solution, validation and claims.

Chapter 6 concludes the thesis by reviewing the contributions, summarizing the addressed

performance management problems and the provided optimisation solution. General related

work presented in Chapter 2 is being reviewed and relevant existing projects are being com-

pared with the proposed optimisation solution. Finally, the chapter summarizes the validation

procedures and results supporting the provided solution and indicates the current limitations

and further investigation opportunities for the presented thesis research.
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CHAPTER

TWO

Background and Related Work

Chapter Summary

This chapter presents background information and related work relevant to the thesis topic. It

describes quality attributes, enterprise systems, component-based software, contextual com-

position frameworks and the J2EE component technology. Relevant related work is presented

from the areas of autonomic computing, self-adaptive systems, automatic management

frameworks and the use of redundancy in software applications. The chapter discusses the

goals, problems addressed and remaining challenges of existing work in the targeted research

domain.

Goals of this chapter:

• Besides functional requirements, enterprise systems have stringent quality constraints

which are critical to the supported business’s success

• Component technologies are increasingly being adopted to provide flexible, manage-

able and reusable solutions for complex software systems. However, existing compo-

nent technologies do not address performance management issues

• EJB is one of the most highly adopted component technology for implementing enter-

prise applications

• Certain EJB system characteristics make the existing self-management approaches de-

veloped for different system types difficult to apply for administering enterprise appli-

cations

• The goals and problems solved by previous redundancy-based solutions do not fully

address the challenges of performance optimisation in EJB-based enterprise systems
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2.1 Introduction to Relevant Research Areas and

Technologies

This thesis is concerned with the automatic management of complex software applications.

The focus is on the performance management of Internet-based enterprise systems, built using

component technologies. At present, component technologies based on contextual composi-

tion frameworks [91] are commonly selected for building enterprise applications. This thesis

consequently targets the management of enterprise systems built using such technologies. The

Java 2 Platform, Enterprise Edition (J2EE)1 technology was chosen for implementation and ex-

perimentation purposes in the presented research work. The choice was based on the fact that

J2EE is currently the most popular component technology adopted by the industry for build-

ing complex enterprise systems.

This chapter provides background information relevant to the targeted research domain. This

includes a description of system quality attributes, relevant software engineering disciplines,

such as component software and contextual composition frameworks and the J2EE Enterprise

JavaBeans (EJB)2 component technology. Based on this, the chapter subsequently discusses

some of the main concerns and the most significant related research in the area. Several re-

maining problems concerning performance management of Internet-based enterprise systems

are indicated and the reasons these problems are not currently addressed by existing research

in area examined.

Various approaches have been proposed for managing software system complexity. Some of

the most significant initiatives involve dynamic system evolution (e.g. [35], [79], [38], [8]),

autonomic computing (e.g. [54], [3], [99] and [73]), self-managing systems3, adaptive systems

(e.g. [72], [61], [37], [16] and [66]), fault-tolerance (e.g. [62], [17], [5] and [78]), self-optimisation

(e.g. [34]) and self-healing (e.g. [47], [23], [20] and [19]) approaches. These initiatives have

somewhat overlapping goals. Taken together, they can be viewed as addressing different parts

of the more general goal of autonomic system management. The Autonomic Computing (AC)

initiative4 provides a complete vision and specification on this overall goal.

Several approaches use redundancy as a means of achieving fault-tolerance and/or perfor-

mance optimisation in software applications (e.g., [6], [78], [47], [64] and [101]). Research on

the topic has been directed towards all layers that are typically involved in a complex software

system, including software applications (e.g. web applications, business logic and databases),

distributed platforms or middleware, operating systems and hardware platforms.

This chapter presents some of the most relevant initiatives and challenges in the aforemen-

tioned research directions. Background information relevant to the presented research pre-

cedes discussions on related work. This includes information on system performance and

other quality attributes, component-based software, contextual composition frameworks and

the J2EE/EJB technology. Numerous challenges remain to be addressed for achieving auto-

1Java 2 Platform, Enterprise Edition (J2EE) technology from Sun Microsystems:
java.sun.com/j2ee

2J2EE / Enterprise JavaBeans (EJB) Technology from Sun Microsystems:
java.sun.com/products/ejb

3Self-managing systems. The optimization challenge, by Rob Cutlip,
IBM developerWorks, Autonomic computing, online article series:
www-128.ibm.com/developerworks/library/ac-selfo/?ca=dnt-634

4Autonomic Computing initiative from IBM: www.research.ibm.com/autonomic
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nomic performance management in the area of Internet-based enterprise systems. The partic-

ular characteristics of such complex software systems cause difficulties in applying existing

approaches from related research domains.

2.2 Software Quality and Quality Attributes

- general taxonomy, definitions and tradeoffs

For most software systems, merely satisfying functional requirements is not enough. Qual-

ity characteristics, such as performance, dependability or security are just as important as the

functional capabilities of the software system. Failure to satisfy such non-functional require-

ments can render the system as unable to accomplish its designated mission, jeopardizing its

success and possibly resulting in loss of revenue, data, or business.

Software system functionality refers to the system’s capabilities or behaviour, or more infor-

mally, to the ’things it can do’. System functionality is provided to system clients as services,

methods, or functions, accessible via system interfaces. An interface is defined as a functionality

abstraction that only defines the operations supported by that functionality but not their im-

plementation [91].

With respect to software quality, a general definition is provided in the IEEE Standard for a

Software Quality Metrics Methodology (1061-1992) [49]:

”Software quality is the degree to which software possesses a desired combi-

nation of attributes (e.g. reliability, interoperability).”

Such attributes represent non-functional characteristics, or properties, of delivered system ser-

vices. They are commonly referred to as quality attributes. A further discussion on the concept

of quality in large-scale, distributed software systems is available from [32].

Software quality attributes can be divided into two main categories, based on whether they

are observable at runtime, or during the software application development cycle. Quality

attributes observable at runtime include performance, dependability and usability. Devel-

opment time attributes include maintainability, reusability and portability. Runtime quality

attributes, also referred to as external attributes [45], are perceived by system users, whereas

development-time quality attributes, also referred to as internal attributes [45] mostly affect

system developers and maintainers. The thesis is mainly concerned with the former category

of quality attributes, namely, external attributes observable during runtime. The focus is on

performance-related attributes, such as response times, throughput and resource usage.

Performance and dependability quality attributes are further discussed in subsections 2.2.1

and 2.2.2 next. Some of the quality attribute terminology defined for the scope of this thesis

may have slightly different meanings depending on the targeted system’s type (e.g. latency

and throughput in telephony, data processing, or computer networking systems). Subsection

2.2.3 indicates the dependencies that exist between various quality attributes and the way they

influence global system optimizations.
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2.2.1 Performance

Performance is a broad concept, with many connotations, depending on the context in which

it is used. The IEEE Standard Glossary of Software Engineering Terminology (610.12) [48]

provides a very general definition of performance:

”The degree to which a system or component accomplishes its designated

functions within given constraints, such as speed, accuracy, or memory usage.”

In [11], performance is regarded as a system quality attribute that characterises the timeliness

of system provided services. A more accurate definition of performance is provided in [12], or

[11]:

”Performance refers to responsiveness of the system - the time required to

respond to stimuli (events) or the number of events processed in some interval

of time”.

In some cases, performance is also equated with efficiency [45]. Efficiency generally refers

to the amount of resources, such as time, energy and effort, consumed by an approach, or

solution, for obtaining certain result or effect [91]. A general taxonomy of system quality

attributes is specified in the ’Quality Attributes’ initiative from the Software Engineering

Institute [11].

Performance Metrics

Metrics represent parameters by which a system quality attribute is specified, measured and

evaluated [11]. Some of the most important performance metrics include:

• Response time: the delay for returning a response to a client request. It is a time mea-

surement between the moment a request is received and the request is fulfilled.

• Latency: the time interval after which a system reacts to an incoming event or request.

It is a measurement of temporal delay. In communication applications it refers to the

delay in time between the sending of a unit of data at one end of a connection until

the receipt of that unit at the destination. In data processing systems, latency refers to

the delay between the receipt of an input event and the system starting to react to that

event. It is the time it takes a system to react to a service request, or incoming event.

• Throughput: the number of requests that can be handled in a certain, clearly specified

time interval. It is a measure of the amount of work a system can perform over a given

time period. This is different from the system processing rate, since it does not mean

that a constant amount of work is performed over the specified interval. For example,

if a system’s throughput equals 100 requests per minute, it cannot be concluded that

the system is processing 50 requests per 30 seconds. It is possible for the system to

be idle for 30 seconds and then handle 100 requests in the subsequent 30 seconds. In

communication systems, throughput is defined by the amount of data transferred per

time unit.

• Capacity: the maximum load a system can support while meeting response time, latency

and throughput requirements. It is a measure of the maximum amount of work a sys-
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tem can perform. Capacity is commonly defined in terms of throughput, meaning the

maximum number of events processed per time interval, in the ideal execution condi-

tions. The useful capacity is the maximum throughput a system can achieve while not

violating other performance specifications such as response times or latency.

A criticality factor can be associated with most performance metrics to indicate the importance

of that metric to the system. Another important performance concern (sometimes referred to

as system modes [11]) describes the way a system’s performance behaviour changes over time,

with the variations in the system’s demand and resources.

Performance-Specific Factors

Attribute-specific factors represent properties of the system and its environment that have an

impact on the attribute metrics [11]. The main factors influencing performance include the

incoming workload, the types and amounts of available system resources and the manner in

which resources are allocated to request handling processes. System workload generally maps

to various demands on the required resource types. Workload can be characterised in terms

of the incoming request frequency (or load), request types (or event types), arrival patterns

and rates for the existing request types (or work-mix) and resource usage requirements for

handling each request. Each request can be mapped to the underlying software and hardware

resources required to handle the request. Software resources include threads, processes,

or connections at the JVM and OS levels. Common hardware resource types include CPU,

memory, device I/O, storage, or network resources. Software services, typically implemented

at the OS level, manage the access to and allocation of each available resource type.

The arrival patterns and execution times required for handling the possible request types can

be used to predict system performance, in terms of response times and throughput values.

Queuing and scheduling theories are sued for this purpose to model system behaviour and

predict their performance behaviours in different execution conditions. Arrival patterns

can be periodic, meaning that they regularly occur at fixed intervals, or aperiodic, meaning

that they occur repeatedly at irregular time intervals. Execution times can be defined using

probability distributions functions. Worst-case and best-case values can be specified to help

define boundary conditions behaviour.

Performance Management Methods

Management methods are means of addressing and optimising an attribute’s metric values -

methods encompass activities such as prediction and evaluation of targeted system metrics,

as well as system architecture and implementation modification for improving these concerns.

Management methods can be devised for different stages in a system’s lifecycle. Development

methods are applied during the system’s architecture specification, design, and implementa-

tion. After system deployment, methods are employed during system execution, for runtime

system management purposes.

Methodologies for ensuring software performance have been devised, targeting both system

development and runtime stages. Approaches concerned with software system development,

advocate the integration of performance analysis and prediction with the various phases of

system development. Some of these approaches include:
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• The Software Performance Engineering (SPE) initiative5, [84], or [100]. This initiative

advocates building system performance models and simulating system behaviour to

predict its runtime performance. Models represent the main system entities and their

interconnections. Each system entity is characterised by its predicted behaviour, per-

formance characteristics and interactions with other entities. Simulating system model

executions helps predict the system’s performance characteristics. The method is to be

applied from the early stages in a system’s development process, and applied iteratively

at increasing levels of detail until the system completion.

• Initiatives from the Software Engineering Institute (SEI)6, (e.g. Architecture Trade-off

Analysis (ATA) [53], Attribute-Based Architecture Styles (ABAS) [58]); Performance-

Critical Systems (PCM), Component Based Development (CBSD), or COTS Based Sys-

tems initiatives7. Component-based software development (CBSD) and COTS inte-

gration focuses on building large software systems by integrating previously-existing

software components. This approach improves system flexibility and maintainability,

potentially reducing software development and maintenance costs. The Performance-

Critical Systems (PCS) initiative focuses on technical practices for analyzing and pre-

dicting the performance and dependability of software systems. It includes model-

based engineering practices and tools and methodologies for documenting and pre-

dicting system performance and dependability.

• Approaches based on design patterns (e.g. [97]) (e.g. patterns for J2EE [2], or gen-

eral patterns (GoF) [41]), or anti-patterns. These approaches focus on determining and

defining best design practices, providing optimal solutions to common implementa-

tion problems in certain contexts. Applying the recommended design patterns may

insure certain system quality properties, such as flexibility and manageability (inter-

nal attributes), as well as performance (external attributes). Related practices can be

performed during system development or runtime, in order to detect and correct appli-

cation anti-patterns, or ensure pattern consistency during system evolution.

• Approaches based on prototypes and trace analysis (e.g. [46])

• Efforts towards performance modelling and analysis using UML (UML documentation

from OMG: [70]) (e.g. OMG ”UML Profile for Schedulability, Performance, and Time”

[71]; or [75], [56], [26]).

These methods assess and predict system performance at various stages in the software

development process - specification, architecture, design and implementation. Performance

management methods are also required during system runtime, to detect and correct design

and configuration problems affecting system performance, optimise systems to various

execution environments and maintain performance-critical design patterns and architectural

styles during system evolution.

Development Time Performance Management Methods

In the early stages of system creation, there is no executable system or prototype implementa-

5Software Performance Engineering (SPE) initiative - founded by Dr. Connie Smith:
www.perfeng.com

6Software Engineering Institute, at Carnegie Mellon University: www.sei.cmu.edu
7www.sei.cmu.edu/str/descriptions/cbsd.html
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tion available for performance evaluation. System artefacts are used instead for performance

prediction purposes. System artefacts, or models, are system abstractions that capture

the system’s structural and behavioural aspects. The accuracy or level of detail of these

artefacts depends on the system’s development stage when these artefacts are being built

(e.g. system general architecture stage, or detailed design stage). Architecture specification is

considered the first stage in a system’s creation when system quality requirements, such as

performance, can begin to be addressed [13]. System architecture is a first system artefact,

representing an abstraction of the system’s structural and behavioural characteristics. A

system’s architectural structure generally consists of the system modules (or components) and

their interconnections. Various formal notations have been devised for representing system

structure and runtime behaviour [9]. Formal notations for system structure include directed

graphs, architecture design languages (e.g. Fractal ADL8) or Unified Modelling Language

(UML) class diagrams. Example notations for a system’s runtime behaviour include UML

interaction diagrams, Message Sequence Charts (MSC), Execution Graphs, Use Case Maps

(UCM), Automata, Process Algebras and Petri Nets.

System performance models are created based on system artefacts and various relevant

estimates. Estimates are made on workloads, software execution paths, resource characteris-

tics such as processing delays, resource requirements for the executable units involved and

execution environment characteristics [100], [84]. When executable prototypes or simulation

models are available, these estimates can be obtained by means of monitoring. Some of

the most common performance model classes are Queuing Networks (QN) (or extensions,

such as Extended QN and Layered QN), Stochastic Petri Nets (SPN), and Stochastic Process

Algebras (SPA). In addition, recent approaches propose creating performance models by

augmenting notations already used for representing system models or designs, such as UML

[70], RM-ODP, or SDL, with performance related information (e.g. performance annotations

for UML [71], [75], [56], or [26]). System models augmented with performance information

are methodologically or automatically transformed into one of the traditional performance

model representations - QN, SPN, or SPA.

Performance models are evaluated by using analytical methods or simulation techniques,

in order to predict performance indices, such as throughput, response times, or resource

utilization. Simulation techniques are considered harder and more costly to build, but provide

more accurate results than analytical methods [45], [9]. Therefore, a combination of the two

techniques is sometimes recommended [45]. More precisely, during the incipient system

creation phases a general analytical model is built in order to detect performance-critical

system parts that require a more detailed examination. Consequently, simulation models are

(only) built for the detected performance-critical system parts.

If performance prediction results are in line with performance objectives, developers can

proceed to reify the existing system architecture, design, or implementation. Otherwise, alter-

natives must be considered, taking into account performance indicators such as bottlenecks,

or resource contention. Iterative processes have been recommended for system development

[84], [4], [18], or [100], in order to facilitate performance assessment at various development

stages rather than only for the fully developed system.

8Fractal Architecture Description Language (ADL): fractal.objectweb.org/tutorials/adl
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Runtime performance methods

System performance management does not end with the system development phase. It contin-

ues with system deployment and into the system execution phases, as a continuous or repet-

itive process. This is not surprising, since performance is an external quality attribute that is

only observable at system runtime.

Extensive research has been carried out towards modelling, evaluating and improving soft-

ware performance during runtime. Some significant research directions in the area of runtime

performance management include the following:

• Runtime performance assessment, by means of monitoring: involves the use of moni-

tors that collect data from the executing system and detect bottlenecks. Runtime mon-

itoring mechanisms have been proposed and implemented for various system types

and at various system layers (e.g. EJB software applications: COMPAS [67], [66]; EJB

application servers, CORBA middleware; JVM; OS; network layer). For certain soft-

ware application types, system execution often provides the first opportunity for an

accurate assessment of system performance. This is especially the case for complex,

large-scale software systems, built using contextual composition frameworks [91] such

as Enterprise JavaBeans (EJB), or CORBA Component Model (CCM).

• Runtime performance anomaly detection, bottleneck localisation and performance pre-

diction, based on monitoring information (e.g. [74], or [67])

• Runtime performance improvement by means of dynamic system modification. Ex-

tensive initiatives in this area focus on developing systems with dynamic, adaptive,

self-optimizing, self-repairing, reflective, or evolving characteristics. It also includes

research on load balancing, component migration, replication, caching - targeted at dif-

ferent system layers and system types. In several cases, performance-related method-

ologies initially devised for system development time were adopted and modified to

be applied during system execution.

2.2.2 Dependability

Most researches in the area of computer system dependability, promote a general definition of

this concept. Conforming to this definition, dependability is commonly thought of as a quality

of a system such that reliance can justifiably be placed on the services this system delivers

[62], [11], or [17].

Dependability Metrics

Dependability is a composed concept, encompassing several attributes, such as:

• Availability, or readiness for usage, which is usually expressed as the time percentage

during which the system is not out of service [11].

• Reliability, or continuity of usage in terms of statistical behaviour, it is the probability

that the system will work as expected over a certain time interval [45], [11]. Reliability

encompasses sub-attributes such as:
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– Correctness is the capability of a system to perform its job, according to its (func-

tional requirements) specification [45]; this definition assumes that the system

specification is available and that the equivalence between the software and its

specification can be unambiguously established. Correctness can be assessed us-

ing experimental methods, such as testing, or analytical methods, including for-

mal correctness verifications.

– Robustness is the ability of a system to handle abnormal situations, which were not

anticipated in the specification, such as incorrect inputs, or hardware resource

failure. Hence, correctness and robustness are strongly related concepts, being

delimited by the specification of the system. If a system requirement is in the

specification, its achievement becomes a problem of correctness. Otherwise, it is

an issue of robustness [45].

Reliability can consequently be thought of as a measure of observable faults, or failures.

• Security, or the ability of the system to withstand unauthorized access, alteration, or de-

struction of data or processes [11]. Security concerns that can consequently be inferred

include confidentiality, integrity and availability.

• Safety, or the non-occurrence of catastrophic consequences on the environment, such as

accidents, or mishaps [11].

Even though the general definition of dependability is consistent across different research

domains, dissimilar views exist on the exact attributes that constitute dependability. Perfor-

mance for instance, is considered a dependability attribute by some works, for example [17],

but not in others [11], or [62]. Nevertheless, certain attributes, such as reliability, availability,

or safety, commonly appear as dependability-related concerns. Therefore, the adopted view in

the presented thesis regards dependability and performance as separate quality attributes. In

addition, the two attributes are considered as generally conflicting, as improved performance

may negatively impact dependability and vice versa [53].

Dependability-Specific Factors

The main factors that affect dependability are faults, errors and failures [11], [62]. A fault repre-

sents impairment in the system, or system usage. It can consist of a design defect, an illegal

input, or a resource failure. The activation of a fault, by executing faulty code for example,

leads to an error. The occurrence of an error means that the system state deviated from the

designers intent. The propagation of an error to the externally observable system behaviour

leads to failure [62]. Failure occurs when system behaviour deviates from its specification.

However, some argue that deviation of system behaviour from its specification can be a result

of a specification fault. Hence, in their view, failure is defined as system behaviour that

differs from intent [11]. System failure can occur both in terms of the system not meeting its

functional specifications, as well not complying with its performance requirements.

Dependability Management Methods

The main means or methods typically used for achieving dependability include fault-

avoidance, fault-tolerance, error-removal and error forecasting [62]. Fault-avoidance method-

ologies provide means of preventing the introduction of faults, at system development time.
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Fault-tolerance mechanisms enable systems to provide their intended or specified services,

even in the presence of system faults. Most fault-tolerance mechanisms are redundancy-

based. Subection 2.7.1 presents several commonly used fault-tolerance schemas. Error-

removal methodologies are intended to minimise the presence of latent errors, by means of

system verification, possibly followed by fault detection and removal. Error forecasting is re-

lated to the process of system evaluation, in order to predict the presence of system errors

and estimate their consequences. In short, fault-avoidance and tolerance are means of pro-

viding system dependability. Error removal and forecasting are ways of validating system

dependability, thereby increasing confidence in the system’s capability of delivering the spec-

ified service(s).

2.2.3 Quality Attribute Tradeoffs

Most system quality attributes are in conflict. For example, improving system performance

would typically impact system dependability and vice-versa. Another example, improving

system efficiency generally implies diminished portability and maintainability. In addition,

internal quality attributes observable at system development time, can conflict with external

quality attributes observable during runtime. The Component-Based Software Development

(CBSD) approach (subsection 2.3.4) provides a relevant example in this sense. CBSD mainly

benefits internal quality attributes, observable during software development and manage-

ment stages. In other words, CBSD facilitates certain software application features, such as

modularity and reuse. For complex, large-scale software systems, such features are essential

for providing (internal) quality attributes, such as manageability and development efficiency.

However, even though these features prove beneficial at system development time, they have

a rather negative impact on external quality attributes, such as performance, during runtime

[21], [97].

The thesis focuses on the automatic performance optimization of complex, large-scale sys-

tems, built with component technologies. Tradeoffs between the various quality attributes

have to be considered when performing runtime optimizations. Namely, rather than focusing

on optimizing individual quality attributes, quantified combinations of such attributes must

be evaluated and system quality optimized overall.

2.3 Component Technologies for

Enterprise Systems

2.3.1 Enterprise Software Systems

This thesis focuses on the performance management of Internet-enabled enterprise systems.

Representative examples of this type of software systems include online banking, e-commerce,

or online stock brokerage applications, as well as corporate and government intranets and in-

formation systems. This subsection summarises the main features of enterprise systems, in

order to support subsequent discussions on viable management solutions.
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Internet-enabled enterprise systems are generally large-scale, distributed, with complex busi-

ness logic and complex middleware infrastructures. They are also highly dynamic, as they

must undergo frequent modifications, to adapt to constant changes in business requirements,

or execution environments. For these reasons, system properties such as flexibility, reusability

and manageability are critical for an enterprise system’s long-term success. These proper-

ties ensure seamless support for repeated modifications and reconfiguration operations on a

system’s complicated behaviour. In terms of quality characteristics, it is crucial for business

success to make enterprise systems highly available, reliable and capable of functioning at

competitive performance levels. However, in enterprise systems short service interruptions

(of the order of seconds) or seldom degraded performance events are not entirely unaccept-

able.

2.3.2 Component Software

There are different views on what software components really are. Consequently, different

definitions exist for software components, stating dissimilar component characteristics or cri-

teria9. Ambiguity is increased as terms such as ’component’, ’module’ and ’object’ are some-

times used interchangeably. To avoid confusion, the thesis adopts one of the most widely

accepted views on software components10 [91], [92]. This view on software components is

shortly discussed in the following sections. The presentation includes component definitions

and describes the main component characteristics. It also discusses component related con-

cepts, such as component frameworks, architectures, models and platforms. Throughout the

thesis, the term component will always be used to refer to a software component, defined in

conformance with the presented view.

2.3.3 Component Concepts and Definitions

This section describes and defines the main concepts and terms related to component software.

The thesis uses the software component concept as defined in Clemens Szyperski’s book on

Component Software [91]:

A (software) component is a ”unit of composition with contractually spec-

ified interfaces and explicit context dependencies only. Context dependencies

are specified by stating the required interfaces and the acceptable execution plat-

form(s). A component can be deployed independently and is subject of composi-

tion by third parties. For the purpose of independent deployment, a component

needs to be an executable unit. To distinguish between the deployable unit and

the instances it supports, a component is defined to have no observable state.

Technically, a component is a set of atomic components, each of which is a mod-

ule plus resources. A component targets a particular component platform. The

9’Beyond Objects’, Software development magazine (online):
http://www.sdmagazine.com/beyond/ - debate on software component definitions,
between Bertrand Meyer and Clemens Szyperski

10Software development magazine (online), Beyond Objects track, by Clemens Szyperski
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composition of components follows one or more composition schemes that are

mandated by that component platform.”

This definition indicates three main component characteristics:

• Unit of deployment

• Unit of third-party composition

• No (externally) observable state

Some of the important implications of these characteristics are subsequently discussed.

In order for a component to be a unit of deployment, it needs to be separated from other

components and from its environment. Consequently, a component encapsulates all its

constituent features. This means that internal component features, or construction details,

should not be visible or accessible by any another component, or by any third party, including

application integrators and deployers. In addition, as a unit of deployment, a component can

never be only partially deployed. For a component to be composable with other components

by a third party, the component has to clearly specify what it provides and requires. In

other words, a component has to encapsulate its implementation and only interact with its

environment via well-specified interfaces. The fact that a component has no visible state

implies that it cannot be distinguished from copies of its own. Therefore, only one copy of

each particular component is to be available in any given process. The reason for this is that

replicas of the same component would be indistinguishable in the same process. As implied

by their name, ”components are for composition” [91]. This means that components can be

reused and reorganized in various ways, resulting in different, new composites. Ultimately,

components may or may not be built using Object-Oriented (OO) technologies. This means

that a component may be built using classes, but also traditional procedures, functional

programming approaches, assembly code, combinations of the above, or any other approach.

The only constraint is that component characteristics must be respected.

Component-based System Architecture

System architecture is of utmost importance for the success of any large-scale software

system. This includes systems built using component technologies. System architecture

largely influences a system’s quality attributes, including system performance and reliability

[86], [85]. In the context of component-based systems, architecture specifies which are the

permitted component types and their roles, the way they interact with their environment and

the allowed interactions between them. Consistent component evolution and maintenance

operations are highly dependent on the overall system architecture design. Devising and

using the wrong architecture, or not being able to maintain the right architecture during

system evolution is almost certain to cause project failure.

As presented in [91], a component system’s architecture ’consists of a set of platform

decisions, a set of component frameworks, and an interoperation design for the component

frameworks.’ System architecture can also be viewed as an abstract reusable model that can

be transferred from one software system to the next. The main concepts related to system

architecture are subsequently described: component platform, component framework and

framework interoperation design.
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Component Platforms

A component platform is an underlying layer that supports the installation of components

and component frameworks, so that they can subsequently be instantiated and activated.

Examples of component platforms include application servers (e.g. J2EE application servers:

BEA WebLogic, IBM Websphere, JBoss and JOnAS), or operating systems.

Component Frameworks

Frameworks have emerged as means of developing complex middleware and software appli-

cations (e.g. [82] and [81]). The success of this type of application depends on the presence

of certain application qualities, such as affordability, extensibility, flexibility, portability, re-

liability, or scalability. Three main framework characteristics are considered to facilitate the

achievement of such qualities in software applications:

• A framework provides reusable software, decoupled from specific application software.

This facilitates specific application customisations, while not allowing the framework’s

imposed interaction protocols and Quality of Service (QoS) properties to be violated.

• A framework provides an integrated set of domain-specific structures and functional-

ities. A well constructed framework models the commonalities of all applications in

a certain domain, including common business processes, or graphical user interfaces).

This allows all applications based on such a framework to take advantage of the pre-

viously acquired domain knowledge and previous experience. Frameworks leverage

common solutions to reoccurring application requirements and design challenges. It is

unnecessary to redevelop and revalidate such common solutions for each new specific

application.

• A framework is a ’semi-complete’ application that developers can use and customize

for creating new specific applications, by extending the reusable framework compo-

nents.

A framework definition is provided in [91]. According to this definition:

A component framework is ”a dedicated and focused architecture, usually

around a few key mechanisms, and fixed set of policies for mechanisms at the

component level.”

Component Framework Interoperation Design

Similarly to component composition, component frameworks can also be composed. This is

done in accordance to a framework interoperation design, resulting in a higher-level compo-

nent framework [91]:

”An interoperation design for component frameworks comprises the rules of

interoperation among all the frameworks joined by the system architecture.”
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2.3.4 Component-Based Software Development (CBSD)

CBSD Definition

Component-Based Software Development (CBSD) is an emerging discipline in software engi-

neering. It is largely considered as the next evolutionary step to Object Oriented Programming

(OOP), for building large-scale software applications by integrating already existing software

components [87]. The CBSD approach can potentially decrease development and maintenance

costs, by increasing software reuse, flexibility and maintainability. Systems can be built rapidly

by assembling previously existing software parts, or components. This approach is based on

the central assumption that certain system parts (re)appear in different large systems with

sufficient regularity. Consequently:

• Common parts should be written once and reused, rather than rewritten every time

• Common systems should be assembled from reusable parts, rather than repeatedly

built from scratch.

Component-based systems encompass both commercial-off-the-shelf (COTS) components

[88], as well as components acquired by other means (e.g. built in-house, or non-

developmental items (NDI) [88]). CBSD is also referred to as Component Based Software

Engineering (CBSE).

CBSD Motivation

Several economic and technological aspects provide the main motivation for the CBSD ap-

proach:

• Economic pressure to reduce system development and maintenance costs and time

• The increase in the number and the quality of COTS components

• The increasing amount of software in organisations, which can be reused in new soft-

ware

• The emergence of component integration technologies, such as J2EE/EJB, CCM/ORB,

COM/CLR, SOA and Web services

CBSD Process

In the CBSD approach, the focus has been shifted from the programming of software, to the

assembling and integration of existing software components. Thus, integration, rather than

implementation, has become the central activity in system development. As such, the CBSD

process encompasses four major activities:

• Component qualification - the process of selecting components and determining their

’fitness for use’

• Component adaptation - the process of adjusting existing components to the particular

running context in which they are integrated. This step is needed because existing

components might be built to meet slightly different requirements and with somewhat

different assumptions about their running context.
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• Assembly of components into systems - the process of integrating components based

on a well-defined infrastructure, or architectural style

• Component evolution - the process of adding, removing, or replacing components for

error-removal, upgrading, optimisation, or addition of new functionalities.

Component Frameworks for Component-Based Software

The main objective of component technologies is the ’independent deployment and assembly

of components’ [91]. However, in order for individually-developed components to cooperate

in a useful manner they have to comply with some common standard. Otherwise, component

interconnections, or wiring, would be built ad-hoc, separately for each component pair.

Such an approach would duplicate efforts and would be prone to errors, making the goal of

component-oriented programming (COP) difficult to achieve.

Component frameworks have been devised to address this challenge. The purpose of specifying

and building component frameworks is to impose certain requirements or standards on

components. If an application is built based on a certain framework, then all components used

to assemble that application must conform to that framework. Consequently, components that

comply with a certain component framework are simply ’plugged’ into the framework and

can then seamlessly interoperate. Thus, a component framework is a software construct that

establishes the environmental conditions for component instances and controls component

instance interactions. In addition, component frameworks generally enforce certain policies

on the instances of conforming components. Policies impose that instances of plugged-in

components can only perform certain tasks via specific mechanisms, which are provided and

controlled by the component framework (e.g. ordering of event multicasts). This approach

helps prevent a number of classes of subtle errors that can otherwise occur.

The main component frameworks currently available on the market include the Enterprise

JavaBeans (EJB) framework from Sun Microsystems, the CORBA Component Model (CCM)

framework from OMG and the COM+/CLR framework from Microsoft. As indicated in [91]

these are contextual composition frameworks. The contextual composition concept is discussed

in the following section. Subsequently, section 2.4 presents the J2EE and EJB framework and

technology for contextual composition. J2EE is the main technological choice of the presented

dissertation research.

Component Frameworks for Contextual Composition

A context is defined by set of properties that characterise a number of constraints; all elements

in a context must abide to the constraints that are defined by that context [91].

Composition refers to the process of assembling elements into an aggregate, without having to

modify the elements involved. The formed ensemble is also referred to as a composite.

As stated in [91], it is impossible to predict the resulting properties of a non-trivial composite,

unless the contexts of the composed parts are at least partially known. To achieve this, certain

aspects of a context should be specified:

• The conditions to be met by a context in order to be considered well-formed

• The context composition rules. Each composition rule specifies the resulting properties

of a composite formed by applying the defined composition operator, over a given set

of elements, with given properties, inside a given well-formed context.
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Component frameworks are an interesting application of contextual composition in the area

of component software. In this area, the elements of composition are component instances.

Composition operations combine component instances sets. Contexts contain a number of

instances with analogous, execution-wide properties. From this perspective, a mechanism

that supports contextual composition of attributed components can be seen as a composition

framework [91], also referred to as contextual composition framework.

In such frameworks, instance composition involves creating contexts and placing instances

in the right contexts. A component instance placed in a context is accessible from outside its

context. However, the context gets an opportunity to intercept all messages, or requests, cross-

ing the context boundaries. The context objects that intercept such requests remain invisible

to component instances both outside and inside the context. Contextual composition frame-

works can be created for properties such as transactional computation, security, or load bal-

ancing. Such properties are sometimes also referred to as aspects as they are likely to crosscut

the system, resulting in system qualities that are not provided by any individual component.

Current technological support for contextual composition in component software includes

COM apartment model, Microsoft Transaction Service (MTS) contexts, EJB containers, COM+

contexts, CCM containers, and Common Language Runtime (CLR) contexts. For the presented

research, the EJB technology and its associated contextual composition model was adopted.

The main motivation for this choice is the extensive adoption of the EJB technology in the in-

dustry, compared to other available technologies and consequently the high availability of ap-

plication server implementations and related tools. The EJB technology is shortly introduced

in subsection 2.4.2.

2.4 J2EE - Component Technology for

Enterprise Systems

2.4.1 Introduction to J2EE

J2EE is the component technology standard specified by Sun Microsystems for building multi-

tiered enterprise applications. The multi-tier distributed model that J2EE uses generally in-

cludes a presentation tier, an application logic tier, and a data persistence tier. Clients of a J2EE

system can be Java applications, or web browsers. J2EE specifies different component types

for implementing the various enterprise application tiers, such as servlets for the presenta-

tion (or web) tier and Enterprise JavaBeans (EJBs) for the application tier. The data storage

(or persistence) tier contains the existing applications, files, and databases. For the storage of

business data, the J2EE platform requires a persistence mechanism, such as a database that

is accessible through the JDBC, SQLJ, or JDO API. The database may be accessible from web

components, enterprise beans, and application client components. Figure 2.1 illustrates the

tiers in a typical J2EE scenario.
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Figure 2.1: application tiers involved in a typical J2EE system:
presentation tier, application tier and data persistence tier

2.4.2 Enterprise JavaBeans (EJB)

Part of the J2EE specification, Enterprise JavaBeans (EJBs) represent server-side reusable soft-

ware components that encapsulate application business logic. The programming language

of choice for EJB is Java. As EJB is a component-based technology, its main purpose is to

simplify and reduce the costs of the development and management processes of large-scale,

distributed applications, such as enterprise applications. Therefore, developers can use EJB to

build scalable, reliable and secure applications without having to devise complex distributed

frameworks and middleware services. EJB provides the distributed platform support and

common services such as transactions, security, persistence and lifecycle management. In

short, developers implement the application business logic, which is stored into EJB compo-

nents (Figure 2.2). Subsequently, EJBs are deployed and managed by EJB containers, as part

of a J2EE application server. EJB containers provide middleware services and manage the EJB

lifecycle during runtime. These processes can be configured via xml documents, referred to as

EJB deployment descriptors.
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Figure 2.2: EJB infrastructure:
accessing EJB components via the EJB container and application server

EJB provides a specification for EJB containers and the services they offer, for EJB components

hosted by such containers and for the way containers and EJB components interact [80].

In addition, EJB provides a set of Java interfaces. Both the EJB components and the EJB

application servers must conform to these interfaces. Consequently, any EJB application

server can manage any EJB component(s) and any EJB component can interoperate with other

EJB components.

The main terms and concepts of the EJB component technology are described over the

following sections. The main benefits of using EJB for building enterprise applications are

also discussed.

EJB Fundamentals

An enterprise bean11 is a server-side software component that encapsulates application

business logic and that can be deployed in a multi-tiered distributed environment [80]. In the

context of component technologies, an enterprise bean is a J2EE component that implements

the Enterprise JavaBeans (EJB) technology.

At runtime, EJBs are managed by EJB containers, which represent runtime environments

within the J2EE server (Figure 2.2). EJB containers provide system- or middleware-level

services to deployed EJBs, including distribution, transaction support, security, or lifecycle

management. Such services are not directly implemented as part of the system’s business logic

specification. However, they are a critical part of any enterprise system’s implementation.

Using the J2EE technology to build distributed enterprise systems provides a clear separation

between the business logic (implemented in the EJBs) and the middleware services (provided

by the EJB application server). As a result, application reusability and manageability are

11J2EE Tutorial from Sun Microsystems: java.sun.com/j2ee/tutorial/1 3-
fcs/doc/EJBConcepts.html
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improved and the implementation and management costs significantly reduced. Application

programmers can focus on implementing the business logic functionalities and not worry

about the system infrastructure-related aspects. The required middleware services are

provided and managed by the J2EE servers instead. The exact manner in which a server

container is to invoke middleware services and manage individual EJBs at runtime can be

configured via XML deployment descriptor files. EJB deployment descriptors are bundled

together with the EJB business logic implementation classes into deployable component

packages, or archives.

An important consequence of the way the EJB technology is designed is that in EJB applica-

tions all client calls to methods of EJB instances must go through the EJB container [Figure

2.2]. As such, clients can never access EJB instances directly. This provides a good opportunity

for intercepting, analysing and processing all accesses to EJB instances, at the server container

layer.

Enterprise beans are built using an Object technology, in Java. Hence, one enterprise bean

can be composed of one or more Java classes. In addition, it may contain various component

resources, such as a number of immutable objects capturing default initial state [91]. At

runtime, Objects instantiated from classes of an enterprise bean can become visible to clients

of this enterprise bean. For example, clients can consist of other enterprise beans, servlets,

applets, or plain Java applications. Clients can acquire references to EJB instances and use

them by means of method invocations.

When clients access and use an enterprise bean instance, they deal with a single exposed

component interface. This is regardless of the composition of the targeted enterprise bean.

This interface, as well as the enterprise bean itself, must conform to the EJB specification.

Conforming to the EJB specification, the required interface must provide a number of

compulsory methods, which allow the EJB container to consistently manage all enterprise

beans, during runtime.

Enterprise JavaBean Types

Starting with EJB 2.0 specification, three types of enterprise beans are defined. The first type,

Session beans, is used for modelling business processes. Entity beans are used for modelling

business data. Finally, Message-driven beans are used for modelling asynchronous business

processes. The three EJB types are briefly described below.

Session beans are action-oriented, in that their main purpose is to execute tasks for clients. A

session bean instance has only one client at a time. Session beans are not persistent, which

means that session bean data is not saved to a persistent storage. When the client of a

session bean terminates the session bean is no longer associated with that client and it can be

removed, or it can be stored in an instance pool and latter associated with a different client.

There are two types of session beans. One type is Statefull Session beans. The state of a statefull

session bean object is retained while the session between the bean and its client lasts. The

state of an object is considered as composed of the object variables values. Because a client is

considered to ’talk’ to a session bean during a session, the session bean state is also referred

to as conversational state. When the session between a session bean and its associated client

is over, the conversational state vanishes. The second type of session beans are Stateless

Session beans. Stateless session beans do not maintain conversational state for a particular

client. A stateless bean may contain state, but only during the execution of one client method
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invocation. When the method execution is over, the state vanishes. This implies that all

stateless bean instances are identical, except during method execution. This allows the EJB

container to assign any stateless bean instance to any client, potentially improving application

scalability. Generally, less stateless bean instances (than statefull bean instances) are necessary

for supporting the same number of clients.

Entity beans represent data objects whose states are stored and maintained in a persistent

storage. In enterprise applications, data objects generally represent business entities, such

as orders, products, accounts, or customers. Various persistent storage types can be used

for maintaining the state of entity beans. For example, the J2EE Software Development Kit

(SDK) provided by Sun Microsystems as a (proof-of-concept) reference implementation of

the J2EE platform, uses relational databases as the persistent storage mechanism. An entity

bean is generally associated with a table in a relational database and each entity bean instance

represents a record in this table. The state of an entity bean is persistent, since it is saved in

a storage mechanism, such as a relational database. As such, persistence means that the state

of an entity bean instance exists beyond a client session, a J2EE process, or the lifetime of the

software application.

Two persistence types are defined for entity beans. The first persistence type is Bean-Managed

Persistence (BMP). When BMP is used, the entity bean class contains the code for accessing

the persistence storage. In case relational databases are used, the entity bean will contain

the Standard Query Language (SQL) calls needed to access and manipulate persistent data.

The second persistence type is Container-Managed Persistence (CMP). When CMP is used, the

EJB container automatically generates the code for accessing the persistence storage (e.g.

database).

Multiple clients can share (or have the impression of sharing) the same entity bean instance.

For example, in an e-commerce application multiple clients can concurrently access a certain

product entity bean, in order to get product information or buy a product item. Multiple

users may be buying the same product at the same time, each user separately modifying

the number of available product items in stock. Business managers may want to change the

product price, description, or number of available items, in parallel. Therefore, as different

clients may want to change the same data, it is important that entity beans work within

transactions. The EJB container typically provides transaction management. The enterprise

application’s deployer is responsible for setting the transaction attributes in the entity bean’s

deployment descriptor. Each entity bean instance has a unique object key, also referred to as a

primary key. This enables a client to locate and access a particular entity bean instance.

An entity bean may be related to other entity beans, similarly to the way relational database

tables can be related to other tables in the same database. For example, in the e-commerce

application example, a customer entity bean may be related to an account entity bean. Or, a

shopping-cart entity bean can be related to a product entity bean.

Message-driven beans allow a J2EE application to process messages asynchronously. Message-

driven beans rely on the Java Message Service12 (JMS) technology. A message-driven bean

acts as a message listener, similar to the way event listeners listen for events. Messages can

be sent by any J2EE component, such as another enterprise bean, an application client, or a

web component. In addition, messages can also be sent by other JMS applications that do not

12Java Message Service (JMS), from Sun Microsystems:
http://java.sun.com/products/jms/
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use the J2EE technology. Message-driven beans can currently process only JMS messages,

but this might change in the future, allowing message-driven beans to process other message

types. Entity beans and session beans can also send and receive JMS messages, but only in a

synchronous manner.

Accessing Session and Entity Enterprise JavaBeans

A client may only access an enterprise bean through the bean’s interfaces. The client is un-

aware of other features of the bean, such as bean method implementations, database access

calls and abstract persistence schemas, or deployment descriptors. Consequently, as long as a

bean’s interfaces do not change, the bean can change internally without affecting its clients.

The EJB specification defines two types of client accesses to enterprise beans: remote and local.

Clients that access an enterprise bean using the remote access type may run on the same ma-

chine as the enterprise bean they access, on a different machine, or on a different Java Virtual

Machine (JVM). They do not have to be aware of the location of the enterprise bean they want

to access. Remote clients can be Web components, J2EE application clients, or other enterprise

beans.

In order to create an enterprise bean that supports remote access, a remote interface and a home

interface have to be provided for that bean, by the bean developer (Figure 2.2). The remote

interface contains the business methods of the enterprise bean. The home interface defines the

life-cycle methods of the enterprise bean, including ’create’, or ’remove’ method(s). For entity

beans, the home interface may also contain finder and home methods. When clients use an

entity bean, they never invoke bean methods directly on an actual instance of the bean class.

Rather, the EJB container intercepts client method invocations and delegates them to the bean

instance. Intercepting method requests enables the EJB container to perform (middleware-

specific) services, such as transaction management, security, resource and component life-

cycle management, persistence, remote accessibility, or monitoring. Hence, the EJB container

acts as an intermediate layer between clients and enterprise beans. This layer of indirection is

referred to as the EJB Object. The EJB Object is thus part of the EJB container. It performs the

intermediate logic that the container requires before a method call can be serviced by a bean

instance.

An EJB Object replicates and exposes every business method that a bean class itself exposes.

Clients of an entity bean call methods on the EJB Object rather than on the actual bean in-

stance. EJB Objects subsequently delegate all incoming business calls to the corresponding

enterprise bean instances (Figure 2.2). One EJB Object is automatically generated for each en-

terprise bean. The EJB Object creation process is different depending on the application server

implementation, from different vendors. The EJB Object implements the bean’s remote inter-

face, as specified by the enterprise bean provider.

A client cannot instantiate an EJB Object directly, as the client and the enterprise bean to be

instantiated may be on different machines, and/or in different JVMs. In addition, the client

does not need to know the location of the enterprise bean to be instantiated. Therefore, clients

can only obtain EJB Objects from an EJB Object factory, also referred to as Home Object, or EJB

Home. The main responsibilities of a Home Object include creating, removing and finding

existing EJB Objects. Like EJB Objects, Home Objects are generated automatically for each en-

terprise bean in a vendor-specific manner. The Home Object implements the Home Interface,

specified by the enterprise bean provider.
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Clients that access an enterprise bean using the local access type can only run in the same

Java Virtual Machine (JVM) as the enterprise bean they access. They have to be aware of the

location of the targeted enterprise beans. Local clients can be Web components or another en-

terprise bean. In order to create an enterprise bean that supports local access, a local interface

and a local home interface have to be provided, by the enterprise bean developer. The local inter-

face contains the business methods of the enterprise bean and the local home interface contains

its life-cycle methods.

Local access to entity beans is faster and more efficient than remote access. As both the client

and the entity bean are required to reside in the same JVM, actions needed for inter-JVM com-

munication in the remote EJB access type are no longer needed in local call procedures. More

precisely, local access is performed directly between application-level objects, via object ref-

erences, in the same memory address space. Thus, local access does not require mapping of

requests between the application layer and the lower-level network layers, as it is the case with

remote communication. Additional operations needed when remote access is used typically

include request marshalling and de-marshalling, as well as network connection management

operations.

A client can call an enterprise bean locally, by using its local Object instead of its EJB Object. A

local Object implements a bean’s local interface rather than its remote interface. Creating entity

bean instances for local access is also faster than creating instances for remote access. Local

EJB instances are created by calling the EJB’s local home interface rather than its remote home

interface. A local Home Object implements the local home interface.

2.4.3 Enterprise JavaBeans - Important Characteristics for

Performance Management

Performance Management Challenges in EJB Systems

Numerous challenges remain to be addressed for achieving autonomic performance manage-

ment in the area of Internet-based enterprise systems. The particular characteristics of such

complex software systems cause difficulties in applying existing approaches from related

research domains. One such characteristic is the increased dynamicity of runtime component

instances and their interconnections, which may cause the runtime application architecture

to significantly differ from the development time design. While this may happen in other

systems types, where components are represented by entire applications or servers, the

frequency and extend of such dynamic modifications are typically reduced when compared

to EJB applications. In addition, the complexity of the implemented business logic and of the

underlying platform layers (e.g. application server, JVM, OS), as well as the possible lack

of access to their implementation, make it difficult to understand and predict the emerging

system performance behaviour during runtime. It is highly expensive to build accurate

performance models that indicate an EJB application’s performance characteristics and

behaviour, at the EJB component level. Some of the most important EJB characteristics that

influence the design of performance management solutions are presented below.

EJB - Separation of Concerns

A significant consequence of the EJB specification is that in EJB applications, the life
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cycle management of deployed EJB components is entirely managed by application server

containers. This is different from other technologies, for example plain Java, CORBA, or

Fractal13, where the instantiation, caching and removal of runtime entities such as objects or

component instances are the exclusive responsibility of application programmers. In such

cases, the code for managing the lifecycle of runtime entities is mixed with the business

logic code of those entities. For instance, in order for a client application to be able to use a

component’s provided functionalities, as advertised by the component’s interface, the client

must first instantiate the component as part of its own code. Then the component’s business

methods can be called on the created component instance. In contrast, in the EJB technology,

the business logic and lifecycle management functionalities are clearly separated. Business

logic is implemented in the EJB classes, whereas lifecycle management functionalities are

provided by the application server and managed by EJB containers. Clients must also obtain

an EJB instance before calling methods provided by that EJB. However, the EJB instantiation,

pooling and caching operations are no longer the client’s responsibility. Instead, the client

merely asks the application server for an EJB instance and then uses the retrieved instance as

before. However, in this case, the actual manner in which retrieved EJB instances are being

acquired is completely transparent to clients. Such tasks are the exclusive responsibility of the

application server container. Upon receiving a client request for returning an EJB instance,

the server container may create a new instance, or retrieve an existing instance from the

appropriate EJB instance pool, or instance cache. Similarly, when an EJB instance is no longer

needed by a client, the server container may decide to destroy the instance, or return it to the

EJB instance pool or cache for future use.

Certain lifecycle management aspects can be configured via EJB deployment descriptors,

including EJB instance pool sizes, or EJB instance caching policies. However, the exact EJB

instance management behaviour is generally not known. For example, in case a number

of EJB instances are being required by clients, the EJB container may decide to perform

a bulk instantiation of 100 EJB instances and store them in the EJB instance pool. As EJB

instantiations are generally costly operations, storing EJB instances in a pool and having

them ready to use upon request can considerably increase system performance. In a similar

manner, if no client requests are received for EJB instances during a certain period, the server

container may decide to downsize the EJB instance cache and pool, in order to free system

resources (i.e. memory). Nonetheless, the application server and container behaviour can

significantly differ depending on the application server implementation and configuration

(e.g. different behaviours in the IBM WebSphere, BEA WebLogic, Sun One, JBoss and JOnAS

J2EE application server implementations). These considerations also hold for other system-

level functionalities, such as transaction support, security, or persistence. While in certain

technologies these services need to be provided by programmers along with the business

logic code, in the EJB technology middleware-services are provided by the application server,

separately from the application business logic.

EJB - Connectivity Specification

Regarding the component interconnection specification in the EJB technology, it is advisable

that all the dependencies of an EJB component on other EJB components be documented in

the EJB deployment descriptor document. This is in order to promote reusability of compo-

13The FRACTAL Project, from Object Web: fractal.objectweb.org
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nent interconnections between deployments in different environments. However, such EJB

dependency specifications are neither compulsory to provide, nor do they necessarily mean

that instances of the indicated EJBs will actually interconnect during runtime. A dependency

specification means that instances of an EJB may bind to instances of the EJBs declared in

its descriptor. Nonetheless, an EJB instance may also bind to instances of other EJBs, whose

names (i.e. JNDI identifiers) can be received dynamically at execution time. This situation may

particularly occur in workflow engine applications, in which core business logic delegates op-

erations dynamically to other business logic, based on input parameters. Such a situation

contrasts with component technologies such as C2 [94], or Fractal, in which runtime compo-

nent interconnections are clearly specified via special-purpose configuration files (i.e. ADL

scripts). In these technologies, when the component interconnections change during runtime,

the corresponding ADL description must accordingly change to reflect the new application

state. Providing such information is not required by the EJB specification and is therefore

unavailable in the current EJB implementations. In addition, frequently and extensively up-

dating the ADL specification of an EJB application at runtime, so as to accurately reflect its

dynamically changing runtime architecture, may raise serious scalability concerns.

2.5 J2EE Application Servers

For the scope of the thesis, an application server is considered to be a software product for

component-based, server-centric architectures. In this context, application servers reside be-

tween server-side software applications and the underlying software (e.g. JVM, OS) and hard-

ware platforms. Their role is to provide middleware services to deployed applications, such as

transactions, security, distribution and persistence. Java application servers are based on the

Java 2 Platform, Enterprise Edition (J2EE). More precisely, J2EE application servers are those

that have been certified by Sun Microsystems as being fully compliant with all the J2EE capa-

bilities.

The JBoss application server was used as the J2EE platform for the implementation and ex-

perimentation work of the thesis. This choice was based on the fact that JBoss is currently the

most popular open-source J2EE application server available. The JBoss server characteristics

relevant to the thesis experimental work are presented in section 4.1.

2.6 Automatic System Management

This section presents some of the main concerns and the most relevant approaches in the area

of automatic management of complex software systems. Existing research in the area can be

categorised based on its goals and adopted strategies. An important research direction targets

the design and implementation of automatic frameworks for dynamically managing, adapt-

ing and optimising software applications. Research projects in this category generally comply

with the adaptive and autonomic system initiatives.

Complexity is currently becoming a prime concern in managing software systems. Software

complexity has emerged as a consequence of ever more elaborated development processes,

increasing system scale and growing requirements for system transformation support. Com-
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ponent technologies have been increasingly adopted for building large-scale software systems,

as they successfully address complex functionality and flexibility issues and reduce develop-

ment and maintenance costs. Nonetheless, current component technologies (e.g., J2EE, CCM,

or .NET) provide little support for predicting and controlling the emerging performance of

software systems that are assembled from distinct components. Static component testing and

tuning procedures are typically run in isolation or simulated environments. Although impor-

tant, such procedures provide insufficient performance guarantees for components that are

to be run in diverse component assemblies, under unpredictable workloads and on different

platforms. In addition, due to the highly dynamic nature of today’s software systems, the envi-

ronmental conditions in which a component runs are likely to periodically change during the

component’s lifetime. Such environmental conditions include the incoming workload and the

software and hardware resources available to a component. Changes in these running con-

ditions can significantly impact a component’s availability and performance characteristics,

which include component’s throughput and response times. For these reasons, it is essential

that software systems and their constituting components are able to seamlessly adapt during

runtime to the constant changes in their business requirements and execution environments.

However, due to system complexity, manually performing such tasks becomes an exceedingly

costly and error prone process. An essential need for automating the system management

processes has been consequently identified. The Autonomic Computing (AC) initiative has

emerged to address stringent requirements for self-management capabilities in complex soft-

ware systems.

This section provides a general overview of the main research directions in the area of per-

formance management in large-scale component-based systems. Performance must be con-

sidered during the entire system lifecycle, starting with system design time and continu-

ing through system runtime as a constant, repetitive process. Several approaches related to

design- and run-time performance planning were presented in subsection 2.2.1. This section

focuses on analysing possible approaches for implementing the main functionalities required

for automatic management support during system execution.

Some perspectives on viable alternatives for implementing self-management capabilities in

complex component-based applications are presented. The intent is to highlight the important

aspects to consider when designing, or porting management solutions used for administer-

ing software systems from different domains. Different solutions are best suited for building

self-management capabilities into different software system types, with different component

technologies and at different component granularities. In certain cases, a particular manage-

ment approach may not be viably ported across certain system types. The reason is that the

particular characteristics of managed entities in various systems can raise distinct problems,

which frequently require custom solutions.

The rest of this section presents some of the main research directions in the area of automatic

performance management for software systems. It reviews some of the main approaches to-

wards implementing the key functionalities of automatic performance management, includ-

ing monitoring, analysis, optimisation decisions and adaptation execution. It also discusses

the suitability of the existing approaches towards managing enterprise systems built using

component technologies based on contextual composition frameworks (e.g. EJB). The focus is

on solutions for managing component-based enterprise systems and on the J2EE component

technology in particular. Discussions on automatic self-management procedures are preceded

by a short presentation of the autonomic computing initiative.
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2.6.1 Autonomic Computing

Autonomic computing is IBM’s research initiative towards solving the software complexity prob-

lem14. The main goal is to reduce the increasing complexity of managing large, distributed

computer systems. The idea behind autonomic computing is to enable software systems man-

age themselves, according to high-level administrative objectives [54], [42]. Autonomic sys-

tems would thus be able to maintain and adjust their operation in response to changes in

various system modules, in the incoming workloads and resource availability and in the sys-

tem functional and quality requirements. Ideal autonomic systems ”just work, configuring

and tuning themselves as needed” [42].

Autonomic computing is regarded as an emblematic term, encompassing a collection of tech-

nologies, for different computing system elements - from small devices to large-scale net-

worked systems, from different disciplines, including both software and hardware domains,

and the integration of these technologies in order to make self-managing systems possible. The

main aspects advocated by the autonomic computing initiative as part of a self-management

solution include self-configuration, self-optimisation, self-healing and self-protection. Re-

search in each of these areas contributes to the overall autonomic computing vision. The

presented research work is consistent with the autonomic computing initiative, focusing on

the self-optimisation functionality of component-based enterprise systems.

2.6.2 Separation of Concerns

An important part in the design of any system management solution is the degree of separa-

tion between the management adaptation logic and the system application code. This aspect

mainly concerns situations in which adaptation actions involve changes in the software ap-

plication behaviour, for optimising performance, or for fault-tolerance. In such cases, several

behaviours are typically available and the adaptation logic is used to decide which behaviour

to use at each time. Various solutions for implementing this conduct are available, differing in

their flexibility and manageability characteristics.

The most tightly-coupled management solutions imply the use of monolithic components. In

these solutions, the adaptation logic is mingled with the business logic code in a single com-

ponent implementation [78]. All possible behaviours are implemented as part of the same

component. ”If - then - else” policy constructs are used to implement the adaptation logic that

selects between the available behaviours. Such solutions are limited by their lack of flexibility,

manageability and reuse. The reason is that the entire monolithic component needs to be un-

derstood, modified and recompiled whenever a behaviour or the adaptation logic needs to be

altered in anyway (i.e. addition, update or deletion operations).

Improved modularity is obtained when design patterns [40] are used to separate different be-

haviours from each other and also from the adaptation logic that selects between them (e.g. the

Strategy pattern [40]). Such solutions allow both the behaviours and the adaptation logic to be

independently modified. Nonetheless, these need to be designed into the software application

when the application is built, since they cannot be added or removed at application deploy-

ment or runtime. In addition, in order to modify the application’s behaviour and adaptation

14Autonomic Computing: IBM’s Perspective on the State of Information Technology: www-
1.ibm.com/industries/government/doc/content/resource/thought/278606109.html
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logic, the entire application needs to be stopped, the targeted parts modified and recompiled

and the application restarted. The actual pattern implementation itself cannot be reused and

needs to be re-implemented for each new application.

Management frameworks, completely separated from the managed applications have been

proposed to provide full separation between the managed application and the management

adaptation logic. Such frameworks typically provide uniform, automated management sup-

port to all applications that comply with a certain standard or specification (e.g. applications

implemented using a certain technology). General management frameworks, as well as sev-

eral specific framework implementations are presented in [72], [54], [43], or [73]. Automated

frameworks are able to dynamically monitor applications for extracting runtime data on the

system metrics of interest, analyse current system state and possible remedial or optimisation

actions and finally decide and enforce adaptation strategies into the running application (Fig-

ure 2.3).

The implementation or configuration of a management framework can be modified com-

pletely independently from the underlying managed applications. Management frameworks

are also used for maximum flexibility and manageability of cases in which multiple possible

behaviours can be selected as means of application adaptation. Namely, separating different

behaviours in individual components and employing a suitable management framework for

selecting amongst the available components significantly increases flexibility and reusability

for the entire managed system. In addition, clearly separating a management framework’s

functionalities into different modules, such as monitoring, adaptation logic and adaptation

execution functions, further improves system modularity. The various modules can conse-

quently be updated independently from the other framework modules, without affecting the

managed applications’ implementation.

Subsequent sections discuss a number of important aspects to consider when building au-

tomated management frameworks. Several existing or possible approaches with their main

characteristics and implications are discussed.
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2.6.3 Granularity of Managed Entities

Complex software systems can be managed at various component granularities. In the con-

text of Internet-enabled enterprise applications, managed entities can represent single compo-

nents (or component groups) implementing application business logic (e.g. EJBs in COMPAS

[66], or JAGR [20] frameworks), middleware services (e.g. transactions or security services

in jonasALaCarte [1]), or entire web or application servers (e.g. Rainbow [43], or JADE [73]

frameworks). While managing a system at lower granularity levels provides the opportu-

nity for more accuracy and control, it can also induce higher management overheads; more

complex adaptation logic may be required to prevent management operations from inducing

excessive performance degradation. For this reason, certain centralised approaches success-

fully applied to manage coarse-grained system components (e.g. servers) may not scale well

when applied for managing fine-grained components (e.g. EJB instances).

2.6.4 Management Control Logic -

Topology and Organisation

Several options are available for designing the architecture and control logic of management

frameworks. The most relevant approaches are based on centralised and respectively decen-

tralised management control. Hierarchical topologies, combining the characteristics of the

centralised and decentralised approaches are also possible and in fact recommended for man-

aging certain system types [39]. The three types of topologies are illustrated in Figures 2.4, 2.5

and 2.6 and discussed in more detail below.

When centralised control logic is used (Figure 2.4), a single management control entity collects

and analyses all monitoring data and makes all adaptation decisions for all managed enti-

ties in the system. An application model is typically used to provide an abstract representa-

tion of the managed application. Models are normally represented as directed graphs, where

graph nodes represent application runtime entities (i.e. component instances) and links in-

dicate runtime communications between these entities (i.e. method calls between component

instances). In some cases, models can initially be built based on available source code informa-

tion of the managed application. At runtime, monitoring data is used as necessary to update

the centralised model, so as to maintain an accurate system representation while changes oc-

cur in the base running system. Reflective middleware and component technologies have

been proposed to support this type of model-based approaches (e.g. JADE [73], Rainbow

[43], K-Components [37], Arctic Beans15 or IguanaJ [79]). Centralised solutions impose that

an abstract meta-model be built and maintained as an accurate reflection for the managed

application. Any change in the base layer, or running application, must be reflected in the

meta-layer, or the application meta-model. Similarly, application adaptation operations are

initially performed at the reflective system meta-level, upon the application model, and then

automatically reflected at the base level, in the actual running application.

The viability of a centralised, model-based approach critically depends on the targeted system

scale and on the frequency and extent of dynamic system transformations that occur during

runtime. Application scale refers, in this case, to the average number of component instances

15Arctic Beans project: abean.cs.uit.no
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available at runtime. Dynamic system transformations refer to the changes that occur in the

running managed application and should therefore be reflected in the application meta-model.

Such changes can represent the creation, reconfiguration or removal of component instances,

or component instance interconnections. Scalability issues may occur when adopting cen-

tralised solutions for managing large applications, with hundreds of component instances and

a high frequency of multiple instance creation, deletion and interconnection events [39].

On the other hand, centralised solutions have successfully been used to manage component-

based applications with a limited number of runtime component instances and relatively rare

dynamic changes. For example, in the JADE [19] and Rainbow [43] projects, managed compo-

nents represent software servers in distributed enterprise applications. In such systems, the

number and type of component instances (e.g. servers) as well as the initial interconnections

among these instances are generally known at deployment time. Also, the frequency of server

addition, removal, or interconnection operations is limited. In pervasive computing research

projects (e.g., [79]) component instances represent embedded devices. In this type of systems,

the number of devices that enter or leave the pervasive system is also limited and the occur-

rence of such events manageable. Nonetheless, scalability problems are likely to occur when

using a centralised approach for managing large-scale, dynamic systems at finer granularities.

A good example of this situation constitutes the management of J2EE systems at the EJB com-

ponent level (e.g., [66] and [99]).

As previously discussed in section 2.4.3, in EJB applications, the application business logic

implementation is completely separated from the middleware services. The combined com-

plexity of both the business logic and middleware services makes it hard to determine or

predict the exact system runtime behaviour. In consequence, EJB models at the EJB instance

granularity level can only be built and updated based on runtime monitoring information.

Nonetheless, the fluctuating EJB instance numbers, caused by complex lifecycle behaviour, as

well as the fine granularity of instance interconnections would cause centralised models at the

EJB instance level to not scale well for most enterprise applications.

Scalability could be improved if centralised models were built at the EJB component level

rather than the EJB component instance level. This means that a node in the directed graph

model would represent one EJB component, rather than one EJB runtime instance. Thus, a

single node would be used to represent all instances of a certain EJB component. The num-

ber of actual EJB instances available for each component can be provided as an attribute of

the corresponding EJB node in the model. This approach was taken for example by adap-

tive monitoring and management frameworks such as COMPAS [66]. Such solutions decrease

the number of model update operations performed during runtime, because events related to

component instance creation and removal do not cause structural changes; rather, they only

cause node attribute value changes. In such cases, only changes in the actual set of deployed

EJB component classes are considered. The set of EJB classes deployed and used at runtime,

as well the runtime interconnections between EJB instances can be automatically detected in

any EJB-compliant application server, via EJB container instrumentations.

In centralised management approaches, adaptation decisions are generally based on an overall

evaluation and optimisation of the application model. Adaptation decisions are then enforced

into the running system, so that all modifications performed at the meta-model level are re-

flected in the actual base application. Nonetheless, globally evaluating and optimising the

entire application each time a performance problem or optimisation opportunity is detected

at the component level, may consume unnecessary resources and not scale well.
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A decentralised approach, where each managed component is evaluated and optimised indepen-

dently from other components provides a viable solution to the scalability problem. However,

exclusively focusing on local component optimisations may lead to non-optimal global con-

figurations for the overall application. A combined solution - hierarchical control topology -

seems to be the answer to this problem, using local optimisations when possible and employ-

ing global optimisations when necessary [39, 27]. The tradeoffs are between optimal solutions

provided by global, centralised adaptation processes versus the better scalability featured by

decentralised approaches.
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Figure 2.4: centralised topology (model based)
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Figure 2.6: hierarchical topology

2.6.5 System Instrumentation and

Monitoring Considerations

System instrumentation is directly related to runtime monitoring. It refers to the process of

modifying a system so as to be able to extract runtime monitoring information on the met-

rics of interest. This is typically performed by inserting some sort of hooks into the system,

at the particular points of interest. Instrumentation hooks are used to intercept and monitor

system activity at the targeted points. Events of interest may include the occurrence of incom-

ing client requests, outgoing responses (including exceptions thrown), as well as component

instance creation and removal operations. Based on these events, performance and availabil-

ity metrics such as response time, throughput, or the occurrence of faults can be computed.

In addition, instrumentation hooks can also be used to control the system, by redirecting or

delaying system requests, or by replacing or reconfiguring system parts.

System instrumentation also refers to that part of a system that allows monitoring informa-

tion to be obtained, and control operations to be performed on the system during runtime.

This section discusses some of the important design and implementation aspects of system in-

strumentation for automatic system management. The discussion is targeted at systems built

using contextual composition frameworks, specifically considering the EJB component tech-

nology.

In order to be able to control applications, management frameworks need to be able to extract

runtime data from the executing system, analyse this monitoring data, evaluate possible re-

medial actions and eventually be able to enforce adaptation decisions into the running system.

Control hooks for extracting monitoring data and modifying running applications need to be

available in the system in order to enable management frameworks to control these systems.

Several approaches are possible for providing management hooks, depending on the architec-

tural layer where the hooks are being inserted. A first approach is to instrument the system at

the software application level. This is achieved by inserting proxies, or wrappers, in front of

all component entities to be managed. This way, all incoming and outgoing calls, to and from

the managed components, can be intercepted at the proxy level. Hence, data can be extracted

from intercepted calls and sent to the management framework. Monitoring data so obtained
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can include performance data (e.g. response times, throughput), fault-related data (e.g. occur-

rence of exceptions), call path data (e.g. the sequence of component method calls in a business

transaction), or component life cycle related data (e.g. number of instances available and used

for a certain component). As previously indicated, the instrumentation proxies can also be

employed for performing control operations on the managed components. Such operations

may involve redirecting incoming client request for load-balancing purposes, or delaying re-

quests during component versioning operations.

When application-level instrumentation is used, proxies need to be created and inserted into

the managed components for each separate application to be administered. For this reason,

it is more than desirable for the application proxification process to be performed in an auto-

matic manner, seamlessly for all targeted applications. A viable solution that provides such

capabilities for J2EE applications, at the EJB component level, in a portable and non-intrusive

manner, is provided by the COMPAS project [66, 68].

A second approach for instrumenting managed systems is to insert instrumentation hooks

into the application server, or middleware layer, or into any of the underlying layers on which

the managed application is deployed and executed. In J2EE for example, all incoming and

outgoing calls to software components (e.g. servlets or EJBs) are intercepted and managed

by the corresponding server containers (e.g. servlet containers in web servers, or EJB con-

tainers in application servers). Thus, server containers can be modified as needed to intercept

calls and provide monitoring information and adaptation control on the managed components

[20]. In this approach, the server containers provide the same functionality that the component

proxies do in the application-level instrumentation approach presented before. Any middle-

ware platform can be instrumented using this general technique. This is because the main

role of middleware platforms is to provide non-functional services to application entities, in-

cluding distributed communication, security, or transaction support. Service provisioning is

achieved by intercepting and managing client calls to the managed components, at the mid-

dleware level, as necessary. Thus, adding management capabilities as a novel middleware

service fits naturally with this design. Middleware-level instrumentation solutions only need

to be implemented once for the targeted middleware platform and can then be used for man-

aging all software applications deployed and run on that platform. However, this solution is

not portable across middleware products, or application servers. A separate implementation

must be provided for each different middleware platform used.

2.6.6 Adaptation Logic -

Strategies, Design and Implementation

Adaptation logic dictates the way automated frameworks take their management decisions.

It directs the decision processes for analysing input data, detecting performance anomalies,

planning and evaluating possible remedial actions and triggering application adaptation

operations. In short, adaptation logic determines when to adapt applications and which

operations to initiate as part of the adaptation process. In more complex management

frameworks, adaptation logic can also be used to adapt the management framework itself.

This includes for example decisions on when to start and stop application monitoring [66] and

adaptation mechanisms. Such framework adaptation actions can be provided for minimising
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management overheads, while not leaving performance problems undetected. Additionally,

adaptation logic can be used to conduct learning procedures and optimise itself over time via

auto-reconfiguration operations [22].

Several strategies exist for designing and implementing adaptation logic in automated

management frameworks. A discussion of some of the most commonly used solutions

follows. The mostly adopted approach for implementing adaptation logic is through decision

policies, which provide a formal way of specifying management behaviour. More thorough

definitions of policies are available [55, 98, 90, 15].

Various types of policies can be used for implementing adaptation logic, including declarative

(or procedural) policies, goal-oriented policies, or utility-based policies. An important deci-

sion when building a management framework is selecting the strategy to use for designing

and implementing the framework’s adaptation logic. Available options differ in the type of

policies used, the manner in which decision policies are to be processed, as well as in the

actual mechanisms used to specify or implement policies. The decision regarding which

policy type or type combination to use when building a management framework depends on

the system management requirements, system scale and available resources for building the

framework. Some of the main policy types and the possible strategies to implement them are

presented next.

Declarative (Procedural) Policies

Currently, the most widely adopted policy type in the AC domain is the declarative or

procedural policy. It specifies the actions to be executed when certain conditions are met.

These policies are typically characterised by: i) an event that triggers the policy evaluation,

ii) conditions to be evaluated and iii) actions to be taken when the policy conditions are met.

For this reason, this type of policy is also sometimes referred to as event-condition-action

(ECA) policy (or simply action policy [55]), or if-then policies. Several options are available

for implementing adaptation logic based on if-then decision policies [52, 7].

Besides the adopted policy types, an important aspect to consider when building policy-

based adaptation logic is the technology used to implement the actual policy sets and the

mechanism for processing them. Various policy languages are available for this purpose.

Ad-hoc solutions are also sometimes implemented, usually for building simple adapta-

tion logic with few if-then policies. Possible approaches differ in their suitability for the

problem addressed, in their implementation costs, and in the flexibility and manageability

that they offer. Most available policy languages provide a rule specification standard and

an inference engine to process policies that comply with that standard. The principal rule

processing methods, or inference engines, include sequential processing, backward and

forward chaining, or various fuzzy solutions (in case fuzzy variables are used). Some of

the existing rule languages that provide these types of inference engines include the ABLE

Rule Engine16 (ARL), Jess 17, or Mandarax18. Certain rule languages (e.g. ARL) allow system

administrators to specify management rules as a set of statements stored in special-purpose

files, which are separated from the managed application code. This implies that managers

do not need to understand the intricacies of the underlying application implementation in

16ABLE Rule Language (ARL): www.research.ibm.com/able
17Jess, the Rule Engine for the Java platform: herzberg.ca.sandia.gov/jess
18Mandarax, Java Rule Engine: sourceforge.net/projects/mandarax
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order to specify sound management policies. Additionally, management policies can be

modified independently from the application implementation logic and without requiring

the application code to be recompiled. These features significantly increase the flexibility and

manageability of the policy-based adaptation logic. In ad-hoc implementations, ECA rules

with sequential processing can simply be specified by using the if-then structures supported

by the programming language used for coding the management framework (e.g. Java, C++).

This option may reduce the implementation costs of implementing simple, small-scale policy

sets; it also provides reduced flexibility and manageability for the adaptation framework, as

the policy code is mingled with the application business logic code.

Goal-Oriented Policies

Another approach for implementing adaptation logic is based on goal-oriented policies and

plans [10, 52, 55]. Even though this approach was less implemented in the autonomic

computing domain, it has recently started to receive increasing attention from the community.

In goal-oriented approaches, high-level system goals are specified, rather than actual instruc-

tions for how to achieve those goals. Goals indicate desirable system states, or desirable

characteristics that the targeted states must provide. A specialised strategy is generally used

for identifying the possible means for attaining the specified goals [10]. Thus, strategies

represent the connection between the actual system (or system description) and the specified

system goals. In order to implement such strategies, the high-level goals are mapped to

lower-level policies that the system can execute. A policy engine is used for this purpose,

automatically mapping high-level goal policies to low-level executable policies [52]. As

the inferred low-level policies must be executable policies, they must be supported by the

underlying system mechanisms, or devices. When this is the case, running a selected low-

level policy sequence triggers the execution of corresponding operations in the underlying

system mechanisms. This in turn places the system into the desired state, thus attaining the

high-level specified goals.

Policy engines for goal-oriented policies are also referred to as planning [52]. A plan consists of

a sequence of actions to be taken for achieving a certain goal. A planning algorithm searches

the spaces of all possible or available plans and extracts a single feasible solution. This is

done by efficiently searching the space of possible system states, selecting the ones that are

favourable for achieving the goal and determining the sequences of actions needed to reach

those states. Plans can be specified as workflows, with sequential, conditional, parallel and

loop constructs. They can be created automatically, or provided by clients or domain-specific

methods. Over time, a repository of possible plans is created, providing the opportunity

to select an existing plan or create a new one for reaching a certain goal. More specifically,

various available plans, consisting of a set of actions, are being evaluated to see how their

execution would help meet specified goals (e.g. performance goals). A plan is selected

and executed based on its predicted capability of leading to an application state closest to

the optimal goals. If none of the existing plans suffice, a new plan can be created, from

existing sub-plans, rules, or possible actions. Some of the most relevant domain-independent

technologies available for implementing planning-based adaptation logic include ABLE (the

Agent Building and Learning Environment) from IBM [89], LPG19 (Local search for Planning

19LPG Project: zeus.ing.unibs.it/lpg/
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Graphs) and SAPA20 and [36].

In comparison to procedural (if-then) policies, goal-oriented policies allow for more flexibility

in the adaptation process, and they free policy designers from having to know the low-level

details of system functionalities. Nonetheless, this comes at the cost of having to implement

fairly complex planning and/or modelling algorithms [55].

Procedural policies and goal-oriented policies based on planning are not necessarily conflict-

ing approaches. In [52], it is argued that planning-based approaches are the next evolutionary

step from the procedural policy-based approaches today. Additionally, planning can be used

to manage procedural policies. For example, a typical planning problem would be finding a

combination of existing procedural policies that would achieve a certain high-level system

goal. Reciprocally, procedural policies could be used to select information and operations

used in planning processes.

Utility-Based Policies

As a further evolutionary step from goal-oriented management solutions, utility functions can

be used to more accurately specify the desirability of various system states. In goal-oriented

approaches, binary functions are used to determine whether a system state does or does not

meet the specified system goals. Utility-based approaches are different in that the desirability

of a state is a real value, rather than a Boolean value. This allows for the desirability of a

system state to be more accurately evaluated and ranked based on multiple considerations,

rather than merely classifying a state as desirable or non-desirable. Thus, the aim in

utility-based approaches is to place the system into a feasible state that has the highest utility

value. This has the benefit of rendering utility policies conflict-free. However, such policies

require the extra cost of having to precisely specify numerical values over the entire system

state space [55].

Trusting Decision Policies

An important matter to address when providing policy-based management solutions is the

’trust’ that can realistically be placed on the efficiency and correctness of such automated so-

lutions. The main concern raised is on how system administrators can trust automatic frame-

works to manage their systems. A possible solution for evaluating automatic management

frameworks and gaining the trust of system administrators is proposed in [22]. Conform-

ing to this solution, automated frameworks are assigned different levels of trust, based on an

evaluation of their runtime decisions. The evaluation is made by human system managers,

who compare their own, correct decisions, with the management actions proposed by the

automated framework. A positive evaluation is given when there is a good match between

the two sets of management decisions. Based on this evaluation, an automated framework

is placed in one of the existing trust categories: minimum trust, partial trust, or maximum

trust. Minimum trust indicates that the automatic system cannot take any action unless first

approved by a human administrator. At the other extreme, maximum trust means that an

automated system can freely implement its decisions for the managed system, without need-

ing confirmation from human administrators. The partial trust is an intermediate trust level

where the automatic system may take some decisions on its own but needs the approval of a

human administrator for others. The described evaluation process is repeated multiple times,

20SAPA Project: rakaposhi.eas.asu.edu/sapa
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in several scenarios. Each time, the automated framework is tuned and updated so that its

decisions better match the ones recommended by human managers. Following this process,

the automatic framework can move over time from the minimum trust level initially assigned

to it, towards the maximum trust level - the goal of automatic system management.

In regard to the actual decision behaviour implemented in the adaptation logic, two main ap-

proaches exist. In the first approach, all decision behaviours are specified and the best one is

selected for each circumstance. In the second approach, statistical data and learning proce-

dures are used to iteratively construct and adapt the decision behaviour in dynamic environ-

ments [51].

2.6.7 Obtaining Component Performance Information

Overview of Performance Information Retrieval

Automatic management solutions adapt applications and optimise their quality charac-

teristics during runtime. The adaptation and optimisation decisions taken are based on

the information available about the managed components, the current system state and

the current execution environment. More sophisticated decision policies can also consider

historical data on previously taken decisions and corresponding outcomes.

In performance management frameworks, component performance information is used

to take adaptation decisions and optimise system performance. Therefore, an important

matter when devising performance management solutions concerns the actual source of the

information needed on the performance characteristics of managed components. Compo-

nent performance information is required to support adaptation decisions for optimising

application performance. Many research solutions require this information to be supplied

by component providers and be made available at component deployment time [101].

Component-level performance information is stored whether in a performance description

document, or accessible from the components themselves via special-purpose API functions

[93]. Depending on the targeted component technology, several limitations may arise when

performance information must be provided at deployment time and used as such throughout

the system’s lifetime. Specifically, two major concerns influence the applicability of this

approach. The first is related to the granularity of the targeted managed entities. The other is

related to the complexity of the underlying software platform on which managed entities are

being deployed and run. More precisely, the finer-grained the managed components and the

more complex the layers between components and the supporting hardware platform, the

harder it is to apply this approach. Fine grained components and complex platforms make it

increasingly difficult to obtain useful mappings between managed component instances and

the hardware resources they need in order to properly function. Obtaining such information

statically, or offline, for fine-grained components running in complex environments, would

be in most cases an extremely costly and error-prone task.

Obtaining and using runtime performance information on managed components may prove

a more viable solution for complex systems. Performance monitoring tools are available for

most component-based middleware platforms. They can extract runtime information on

the resource consumption at component level. Clearly, the overheads induced by runtime

monitoring and diagnosis must be considered, such as with any management activity or

non-functional service provided at system runtime. Component information obtained
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during runtime can successfully be used to predict the performance of the component on the

same platform, under similar execution conditions. Nonetheless, component information

obtained in a certain execution context will be less relevant when the same component is

integrated in different applications, and run on different platforms. For this reason, static

performance testing does not provide performance guarantees for components that are to

be integrated in different systems, deployed on different platforms and run under different

workloads. Therefore, if static performance information, such as absolute response times

or resource usage values, were supplied by component providers, this information would

almost certainly prove inaccurate under most execution contexts. It might indeed be possible

in theory for performance information to be provided with sufficient accuracy for a particular

component and a certain, specific execution context; the targeted execution context would

consist of a particular release version of a certain application server, JVM, Operating System

and hardware platform. In this case, separate, extensive tests would have to be run to

determine the way the component’s performance changes on this particular platform, with

changes in the incoming workloads and diverse server and JVM configurations. The process

of obtaining such information for a single, very well specified platform would be extremely

costly. Having to repeat the process each time one of the platform layers changes, or indeed a

new version appears for one of these layers, might prove prohibitively expensive.

Certain approaches propose that components provide special-purpose API functions that

return the component’s performance characteristics upon request. Responses would be based

on given input values describing the current execution environment [93]. More precisely,

the performance functions return a component’s response time, throughput and resource

usage characteristics, based on input data on the current deployment platform and incoming

workloads. This is a valid approach for certain system domains, such as for scientific

applications where components implement data processing algorithms and do not necessitate

any significant middleware support [93]. Applying these approaches to component-based

enterprise applications would necessitate carrying out extensive testing and/or modelling

processes so as to be able to determine correct component performance behaviour and

formally represent it as API functions. In addition, the performance characteristics of those

components that are being used by the targeted component would also have to be considered,

since components used may have a critical impact on the overall transaction performance.

For the presented reasons, approaches based on static performance information may only be

suited when managing coarse-grained components, running on relatively simple platforms,

such as in the case of pervasive computing systems, Storage Area Networks (SAN), or

enterprise systems managed at the server granularity level. For example, an application

server distribution may provide recommendations on the approximate amounts of CPU,

or memory that should be available to the server at runtime in order to ensure reasonable

performance. The subject of obtaining component performance information in the context of

the EJB component technology is discussed below.

EJB Component Performance Information

EJB components are fine-grained components, with a fairly complex underlying platform.

The software platform consists of multiple layers with complicated behaviours and provided

functionalities that include application server, JVM and Operating System. These platform

layers provide services that are not directly related to the application business logic, such
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as distribution, component instance creation and destruction, caching operations, or garbage

collection. Thus, the execution behaviour of such services is not easily correlated with the

business logic-related activities performed by running EJB instances. However, these services

have a profound impact on performance and hardware resource usage [21]. In consequence,

the exact mapping between the activity of EJB instances and the hardware resource usage is

not straight forward to observe.

When commercial application servers are used, the server source code is not available. Thus, it

is not possible in these cases to model the server’s behaviour based on knowledge of the way

the server is implemented. It could be argued that this problem can be solved by predicting

the server’s behaviour to a certain degree, based on extensive testing procedures. It may be

indeed possible to obtain satisfactory results by running a sufficient number of separate tests

and correctly analysing and merging collected monitoring data. However, this approach may

prove prohibitively costly due to the high complexity of application server behaviour. Overall,

the cost of the process needed for obtaining such results would probably not justify the ben-

efits. In addition, the process would have to be repeated for various container configurations

and for each different server version release.

When open-source EJB servers are used (e.g. JBoss, JOnAS21), their source code is available

and could be analysed for understanding and predicting the server’s behaviour. Nonetheless,

the complexity of the application server logic, combined with the complexity of the underly-

ing layers remains a critical factor within the scope of creating accurate models, rendering the

process highly expensive and error-prone. Such models would also have to be configurable to

consider different incoming workloads and underlying platform layers (e.g. JVM, OS, hard-

ware). As before, this costly process has to be repeated for each different server release.

Alternatively, a viable approach could be to automate the described testing process, so as to

automatically obtain performance information on a specific component, when running in a

certain execution context [25]. In such cases, inferred performance information can accurately

be used to predict EJB components’ performance while they run under the same execution en-

vironment in which the information was obtained. The same information can also be used as

general guidelines on the EJBs’ performance behaviour (rather than as absolute values) when

the same EJB components execute as part of different applications or on slightly different exe-

cution platforms. In these cases, such general, initial performance information would have to

be validated and correspondingly updated at runtime with accurate monitoring information

from the current system. Runtime performance diagnostic tools are available for assessing the

performance of EJB instances. Commercial tools, as well as research instrumentation solutions

(e.g., [66, 43, 73, 20] can be used at runtime to collect accurate monitoring data from the tar-

geted system and execution environment. Data mining and machine learning strategies can

then be used to process collected monitoring data and infer reliable performance information.

2.6.8 Adaptation Actions - Strategies and Operations

Several types of remedial actions can be used to adapt applications, depending on the type of

managed entities and the targeted management goals. Some of the most frequently employed

adaptation actions include:

21JOnAS J2EE application server: jonas.objectweb.org
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• replacing application components with new component versions, in order to correct

detected functional faults (e.g. [77])

• swapping components with functionally-equivalent components, for performance op-

timisation purposes (e.g., [101, 3, 93])

• redeploying components on different hardware nodes, in order to recover from node

failure, optimise resource usage on a servers cluster, or for load-balancing purposes

(e.g., [73], or [95])

• restarting components in order to deal with certain types of faults (e.g., [20]); in J2EE

systems for example, restarting software components, such as EJBs, can be achieved by

redeploying components (e.g., [73], or [20]).

• reconfiguring components, in order to optimise system performance. The set of recon-

figurable parameters strictly depend on the type of targeted managed component (e.g.

maximum size and instance lifetime for a caching component, or number of deployed

applications for a clustered server component)

In J2EE systems, adaptation operations can be performed at different component levels, such

as:

• At server level: software servers can be started, stopped, restarted, redeployed on a

different hardware node, reconfigured, or updated with a newer version (e.g., [73], [19],

or [43]).

• Middleware service level: server-provided services can be reconfigured, or replaced

with different implementations (e.g. in JBoss, developers can provide custom service

implementations to be used by JBoss during runtime) (e.g., [1])

• Application component level: EJB components can be redeployed, hot-swapped, or

reconfigured (e.g., [20], [99], [28], [33])

2.7 Software Redundancy for

System Management

Previous sections discussed relevant related work on automatic management frameworks for

complex, component-based systems. Other research directions, significant for the presented

dissertation, are based on the use of software redundancy for managing and meeting the qual-

ity goals of software systems. Specifically, various approaches use redundancy in order to

achieve fault-tolerance, self-healing, or self-optimisation. Various system types are being tar-

geted, including procedural, object-oriented, component-, or services-based software applica-

tions. This subchapter discusses the main research directions in which software redundancy

is used for automatic management purposes.
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2.7.1 Redundancy for Fault-Tolerance

Redundancy for increased robustness or reliability has been successfully used in various

domains, including computer hardware, mechanics, or constructions. The same concept

was later introduced in computer software, in order to achieve fault-tolerance in software

systems [47]. ’Design diversity’ is another term used in some research projects to denote the

redundancy concept [76], [63].

Significant examples of system fault-tolerance schemes implementing the redundancy

concept include the Recovery Blocks (RB) [78] and the N-version programming (NVP)

[5], or [6]. Other, intermediate schemes exist, combining and/or optimising the RB and

NVP approaches. These include the N self-checking programming (NSCP), t/(n-1)-Variant

Programming, the certification trail scheme, the Self-Configuring Optimistic Programming

(SCOP) [62], or (even) the exception handling approach. The Recovery Blocks (RB) and

the N-version programming (NVP) techniques are described in the following sections. The

main similarities and differences between these approaches and the proposed research are

subsequently discussed.

Recovery Blocks

The Recovery Block (RB) was the first scheme to be developed for achieving fault tolerance in

software applications. It was initiated by Brian Randell, at the University of Newcastle upon

Tyne in 1970 [78]. Two main considerations led to the development of the RB scheme:

• Structuring software systems in order to control their complexity

• Enabling fault-tolerance capabilities in software systems

These considerations led to the RB design style, based on the concept of idealized fault-tolerant

components. The main purpose of idealized fault-tolerance components is to prevent residual

software faults from propagating and impacting the system environment. Software faults are

generated by a component’s code and can be propagated through neighbouring components.

The Recovery Block (RB) approach uses idealized fault-tolerance components for increasing

software system reliability. It is important to note at this point that in the RB context, the term

’component’ is used to generally refer to software modules, or pieces of software code.

An idealized fault-tolerance component, or recovery block, consists of a number of code

variants, or alternates and an acceptance test, or adjudicator. When a client request reaches

an idealized fault-tolerance component it is first executed by the first variant, also referred

to as the primary alternate. The outcome of the primary alternate execution is evaluated

by the adjudicator, which runs an acceptance test. If the acceptance test is passed, the

execution outcome of the primary alternative is considered successful. The recovery block

is consequently exited and the request results returned. Otherwise, in case the acceptance

test fails, the state of the system is restored and the second alternative is invoked to execute

the same client request, with the same input data. The acceptance test is run again, and so

on, sequentially, until one of the alternates passes the acceptance test, or all alternates are

exhausted. In the latter case, an exception is signalled to the recovery block’s environment.

In addition, recovery blocks can be nested, meaning that each alternate variant can itself be

an idealised fault-tolerant component. As such, an exception raised by an inner-block can

be handled by a recovery alternate of the enclosing block. Also, it is possible for different
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alternates to produce different results, as long as the results are acceptable, in the sense that

they pass the acceptance test. This would allow a primary alternate to aim at providing the

desired service and an alternate to only attempt to supply degraded service.

The Recovery Block (RB) scheme involves little processing overhead, and induces small

delays, unless faults occur. Nonetheless, its success critically depends on the effectiveness of

the employed fault-detection mechanism - the acceptance tests.

N-Version Programming

The concept of N-version programming (NVP) was first introduced in 1977 [6], as a method

for achieving fault-tolerance in software systems. The main element in NVP is the N-version

software (NVS) unit [6, 5]. An NVS unit is a fault-tolerant software unit encompassing two

or more member versions. Member versions provide equivalent functionalities, but are im-

plemented by different parties. All member versions in an NVS run in parallel, processing

client requests. The separate results delivered by each NVS member version are collected and

compared. Individual results constitute the input of a decision algorithm, also referred to

as a voter, which establishes the consensus result. If the individual results are not identical,

the voter assumes that the majority (should there be one) is correct. The process by which

NVS member versions are produced is referred to as N-version programming (NVP). As spec-

ified in [6], the success of NVP as a fault-tolerance method critically depends on whether the

residual software faults in each version of the program are distinguishable. This is because

in order to increase software reliability the NVP method highly depends on the assumption

that different member versions produced by independent parties will fail independently. This

would mean that failures in the different versions occurred randomly and were unrelated. The

probability of all versions failing for the same input would be consequently very small. More

specifically, for N versions, failure probability would be proportional with the Nth power of

the probability of failure in the independent versions. If this assumption were true, the relia-

bility of the software system could be considerably higher than the reliability of the individual

versions. Nonetheless, certain research initiatives question the validity of this assumption

[59]. Raised concerns stem from the fact that when working on difficult problems program-

mers tend to make the same mistakes, even when working independently. This is explicable

by the fact that some problem parts are inherently more difficult than others. Based on NVP

evaluation experiments presented in [59] it was concluded that ”the assumption of indepen-

dence of errors that is fundamental to the analysis of N-version programming does not hold”.

This does not mean that NVP should never be used, but that the NVP reliability might not

be as high as predicted under the assumption of independence. Hence, a major objective in

NVP is to maximize the independence of the member versions involved, by employing for

example the design diversity concept. This would minimize the probability of two or more

NVP versions to produce erroneous results for the same decision action [5].

2.7.2 Redundancy for Performance Optimisation

The previous section discussed how redundancy can be used for providing fault-tolerance

capabilities in software applications, in order to increase the reliability of such applications.

This section describes how redundancy can also be used for improving the performance

characteristics (of software applications). This idea is based on the fact that different
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implementation strategies are optimal in different environmental conditions [101]. One of the

oldest initiatives towards using redundancy for improving software performance is the Open

Implementation approach [57]. In the following section, we shortly present this initiative as

well as other, more recent approaches.

Open Implementation

The main motivation behind the open implementation approach [57] is that ”it is impossible

to hide all implementation issues behind a module interface. Some of these issues are crucial

implementation-strategy decisions that will inevitably bias the performance of the resulting

implementation. Module implementations must somehow be opened up to allow clients con-

trol over these issues as well.” This indicates two conflicting software development principles:

1. The encapsulation principle, or black-box, traditionally used in software development

for obtaining software qualities, such as reuse, or portability.

2. Internal module information, on the implementation strategy, needed for achieving per-

formance.

Consequently, the best module implementation strategy, with respect to performance, cannot

be determined unless the module developer knows the way the module is to be used. How-

ever, the black-box principle forces the developer to decide the implementation strategy early

in the module development and then lock this decision in the black box. This decreases the

probability of successful module reuse by different clients, with different performance require-

ments, in different usage scenarios. This problem is sometimes referred to as the Encapsulation

Performance Problem (EPP).

The Open Implementation approach addresses this problem by enabling clients to select the

implementation strategy of the modules they want to use. This approach aims at overcom-

ing the problems of the black-box principle, while maintaining its advantages. The open im-

plementation solution involves the creation of software modules with certain characteristics.

First, for the same offered functionalities, a software module provides different implementa-

tion strategies, each one suitable for a different usage context and performance requirements.

Second, a software module presents two different interfaces :

• a primary interface, for specifying module functionalities. Clients can use this interface

to call functions, or methods on the software module

• a meta-interface, for specifying the available implementation strategies. Clients can use

this interface to select the most suitable implementation strategy of the software module

they want to use

By providing these characteristics, the open implementation initiative aims at allowing pro-

grammers to:

• use a module’s default implementation strategy when possible

• be able to select a module’s implementation strategy when necessary

• deal with a module’s functionality and implementation strategy decisions in largely

separate ways
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Dynamic Selection of Component Implementations -

Local Performance Optimisations

Adaptive components are proposed in [101] with the purpose of optimising application per-

formance in conditions of workload variations. The problem addressed is similar to the one

presented in the Open Implementation approach - the inability of clients to control a compo-

nent’s implementation strategy, so as to obtain optimal performance in a specific application

context. The main difference is that in the Open Implementation clients are made responsible

for selecting the implementation strategy they deem optimal for use. Clients can only select

the implementation strategy once, when implementing the application. After this, the selected

strategy will be used throughout the application’s lifetime. In [101], the selection is performed

at the server, or provider side, rather than by the client. In addition, the selected strategy is

dynamically swapped during runtime, to accommodate changes in the running application

context’s workload variations.

As defined in [101], adaptive components have multiple implementations, each one optimised

for a certain incoming workload. A mechanism for switching between the available compo-

nent implementations is also provided at deployment time. The swapping mechanism needs

to be implemented by component developers, separately for each swappable component pair.

A management mechanism is to be implemented at the component platform, middleware,

or running-environment level. This management mechanism is responsible for monitoring a

component’s incoming request workload and dynamically switching component implemen-

tations, using the swapping mechanism provided, so as to achieve optimal performance. An

important issue is when to switch implementations and which implementations to switch in

order to achieve optimal performance. In [101], this issue is referred to as the adaptive compo-

nent problem. Therefore, the focus is to find an algorithm for calculating the potential benefits

of swapping two component implementations. The Delta algorithm is proposed for this pur-

pose, to determine when to perform a swapping operation, if two alternative implementations

were available.

2.8 Self-Adaptive Software Systems

Self-adaptive software is a relatively novel approach [61] that promises to enhance robustness

and performance characteristics of software systems, in conditions of changing resources or

requirements. According to the Defence Advanced Research Projects Agency (DARPA)22:

“Self-adaptive software evaluates its own behaviour and changes behaviour

when the evaluation indicates that it is not accomplishing what the software is

intended to do, or when better functionality or performance is possible. ... This

implies that the software has multiple ways of accomplishing its purpose and

has enough knowledge of its construction to make effective changes at runtime.

Such software should include functionality for evaluating its behaviour and per-

formance, as well as the ability to re-plan and reconfigure its operations in order

to improve its operation. Self-adaptive software should also include a set of com-

22DARPA Broad Agency Announcement on Self-Adaptive Software, BAA-98-12, December
1997: www.darpa.mil/ito/Solicitations/PIP 9812.html
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ponents for each major function, along with descriptions of the components, so

that components of systems can be selected and scheduled at runtime in response

to the evaluators. It also requires the ability to impedance match input/output of

sequenced components, and the ability to generate some of this code from speci-

fications. In addition, DARPA seeks this new basis of adaptation to be applied at

runtime, as opposed to development/design time, or as a maintenance activity.”

The aforementioned proposal indicates that self-adaptive software is able to evaluate its be-

haviour and performance at runtime. When evaluation results do not conform to the system

goals, or in case optimisations are possible, the system is able to change its structure, con-

figuration, or behaviour, in order to improve its functionality or quality characteristics. This

implies that the system has knowledge of its objectives and intended behaviour, as well as

means of monitoring and correspondingly modifying itself at runtime, for meeting these ob-

jectives.

As stated in [61], most self-adaptive software approaches use concepts from two main (re-

search) domains: dynamic planning and control theory. The ideas promoted in these two fields

are complementary. Consequently, most research initiatives on self-adaptive software employ

notions from both areas, to various degrees. In dynamic planning systems, goal-oriented op-

eration plans are used to dictate and schedule the actions to be taken by such systems. Plans

can be inspected, evaluated and dynamically modified at runtime. Dynamic plan changes

are reflected in the system runtime operation. Hardware, communication links and software

modules are considered computational resources that a plan can (re-)configure and schedule

(section 2.6.6).

Regarding control theory-based approaches, various research initiatives propose that con-

cepts, architectures and techniques used in control theory should be mapped to software engi-

neering, for specifying and designing self-controlling software systems [60, 69]. Control the-

ory concepts that would be used in this way include controllability, observability, stability and

robustness. It is considered that accumulated experience and solutions devised for solving cer-

tain problems in control systems, such as oscillating states, or chain reactions, can be used for

solving similar problems in the software engineering domain. Emphasis is placed on adaptive

control theory considerations. Adaptive control systems implement monitoring, evaluation

and re-configuration mechanisms separately from the functional system that is managed and

controlled.

Most self-adaptive software approaches separate the system adaptation logic and adaptation

mechanism from the system functional code [23, 72, 60, 37]. In most self-adaptive approaches,

adaptation mechanisms use centralised system models for representing knowledge on the

system operation, structure and purpose. Such models are employed in system evaluation,

re-configuration and adaptation processes.

System architecture is commonly used as a base for building system models (e.g. [23, 72, 37,

44, 43, 73]). That is because system architecture provides a useful system abstraction, hiding

unnecessary details, while preserving the essential aspects. Architectural models can gener-

ally show:

• a system’s structure, including the component interfaces and interconnections

• configuration information, indicating the component implementations for each inter-

face and the intercommunication protocols used
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• data and control patterns, specifying the system behaviour

An architectural model can also constrain the permitted reconfiguration operations on the sys-

tem [23]. Several adaptable-software projects employ architecture-based models for represent-

ing knowledge on the system structure, behaviour and goals. These models are maintained

during system execution and reflect changes in the underlying system. At runtime, the system

architectural model is augmented with system monitoring information. Specialised models

are being created depending on the targeted quality parameters. For example, specific perfor-

mance and reliability models are created in case performance and reliability are the targeted

quality parameters. Specialised models are derived from the architectural model and aug-

mented using relevant monitoring information. For example, response times and throughput

information is used for performance models, whereas the number of failures per time interval

would be used for reliability models. Created system models are evaluated during runtime in

order to identify functional or quality related problems. For solving detected problems, avail-

able repair or optimisation alternatives are considered. Re-factoring solutions are devised,

based on the current model(s), evaluation results, prediction results for the new considered

models and possibly a history of previous re-factorings and their corresponding outcomes.

Analytical methods, such as queuing theory-based techniques, are used for predicting the val-

ues of the targeted quality parameters for a specific model. The selected adaptation operations

are enforced, or reflected, into the running system, while preserving system integrity. Possible

system adaptation operations consist of model re-factorings such as repair, or optimisation

procedures. System integrity is preserved by correctly transferring state information between

component versions and keeping client references consistent. Some adaptability approaches

aim at repairing software systems in case the system functional or quality-related objectives

are not being met [23]. In addition to this, other approaches also attempt to optimise software

systems whenever possible [72]. In such cases, a system is being optimised whenever an im-

provement opportunity is detected, rather than only when system goals being infringed.

In reflective or self-adaptive systems, changes performed on the abstract system model are

automatically reflected in the operational system. Similarly, modifications in the operational

system, including component updates, or architectural changes, are reflected in the (abstract)

system model. Models can be augmented with system quality information, such as perfor-

mance or reliability related information. Runtime system monitoring is generally used for this

purpose to collect the system runtime data. Evaluation operations can then be performed on

the resulting performance or reliability models, in order to determine whether the system is

meeting its performance or dependability goals. Reconfiguration operations are correspond-

ingly devised or selected for improving the system when necessary.

2.9 Hot-Swapping in Software Systems

Component hot-swapping refers to the ability of replacing components at runtime, even if

they are being actively used by the system [50]. The ability to hot-swap components can be

used as part of automatic system adaptation solutions to increase system availability, optimise

performance and improve reliability. Component hot-swapping supports dynamic system

upgrades, allowing for a system’s behaviour to be modified without interrupting the system’s

execution. As suggested in [42], component hot-swapping can be realized by:
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• Interposition of code: inserting a new component between two existing components, at

runtime

• Replacement of code: switching an active component with a different one, at runtime

According to one of the research initiatives at IBM [42] hot-swapping can be employed for

enabling autonomic features in software systems, as follows:

”Autonomic computing systems are designed to be self-diagnosing and self-

healing, such that they detect performance and correctness problems, identify

their causes, and react accordingly. These abilities can improve performance,

availability, and security, while simultaneously reducing the effort and skills

required of system administrators. One way that systems can support these

abilities is by allowing monitoring code, diagnostic code, and function imple-

mentations to be dynamically inserted and removed in live systems. This ”hot

swapping” avoids the requisite prescience and additional complexity inherent in

creating systems that have all possible configurations built in ahead of time.”

As the best strategy for obtaining optimal performance critically depends on system workload

and available resources, components with different implementation strategies can be dynam-

ically replaced when the system execution conditions change. A trade-off exists between the

benefits obtained by employing extensive system monitoring and data analysis, for detect-

ing and solving performance or security problems, and the performance overheads caused

by such monitoring and analysis operations. Interposition can be used to enable adaptive

monitoring techniques [66], which allow extensive monitoring to be activated when general

problems are detected and removed after no longer needed. Additional hot-swapping ben-

efits include: imposing system modularity, increase system availability by enabling dynamic

upgrades, support system evolution and simplify testing processes.

The main actions involved in performing component-swapping operations include [42, 50]:

• Triggering the hot-swapping operation - either the hot-swapped component instance

itself or the supporting system infrastructure can determine when a certain component

needs to be replaced. Monitoring and data analysis operations are required for deter-

mining when to hot-swap components. Extra monitoring can be enabled if needed, by

means of (object) interposition.

• Choosing the target component - which component to hot-swap

• Performing the hot-swap operation. Various aspects need to be addressed when per-

forming this action. One concern is related to state transfer between the hot-swapped

component instances. First, a component state must be established when it is safe to

transfer the state and hot-swap components. A component instance’s state will not

be accessible by any thread in the system when it is being transferred. Second, the

component instance state must be transferred from the old component instance to the

new one. Another hot-swapping concern involves the corresponding modification of

all client references from the old component (instance) to the new one.

• Dynamically introducing new components (types)
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2.10 Dynamic Component Versioning

Component versioning aims at replacing current system components with new component

versions, in order to provide new functionalities, remove bugs, or improve quality character-

istics. An important concern is verifying whether new component versions are indeed better

than the old ones. This verification should be performed before dynamically upgrading the

system. A second concern is the actual system update procedure, which needs to be performed

during runtime, while preserving the system’s integrity. The component versioning approach

presented in [77] focuses on increasing the confidence in new component versions, before

allowing them to operate in the system. The approach is based on testing new component

versions online, in parallel with the old component versions that operate in the system. On-

line test results, from new and old component versions are compared and the best component

version determined. For the online testing procedure, new component version candidates are

deployed and run in parallel with the old component versions. Candidate versions receive

and handle client requests from the running system, the same way the old versions do. How-

ever, candidate versions under test are not allowed to influence the running system in any way.

Only results yielded by the old versions are propagated into the system. New component ver-

sions are allowed to replace old versions only if they are evaluated during the testing period

to be correct and superior in some sense to the old versions. In its current specification though,

this online testing method does not handle situations in which tested components need to use

and get results from other components in order to execute their tasks and provide results. This

is a serious constraint, since it limits the applicability of the proposed method to leaf compo-

nents that do not affect the system in anyway. The possibility of multiple component versions

being kept is also considered. However, the circumstances in which this would occur, or the

way such versions would be managed and used in parallel is no further elaborated. The pre-

sented dissertation research considers cases in which it is hard, or even impossible, to devise

and manage a single monolithic component that yields optimal performance in all possible

execution contexts (e.g. workloads, or available resources). Such cases are addressed by using

different component variants yielding optimal performance characteristics in different execu-

tion contexts. For this reason, the aim is to maintain a number of such component variants

at runtime, and be able to use them alternatively so that they ’complement’ each other and

provide optimal quality characteristics, such as performance, reliability, or correctness, at all

times.
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CHAPTER

THREE

Using Component Redundancy for

Automatic Performance Optimisation

Chapter Summary

This chapter describes the redundancy-based optimisation solution proposed as part of the

thesis research. It clearly defines the thesis goals, delimits its scope and shows its main

contributions. The presentation introduces the component-redundancy concept and explains

the way it is used to dynamically optimise software applications. Related concepts and terms

required to describe the presented management solution are defined. The proposed AQuA

management framework is presented, as a means of supporting the redundancy-based opti-

misation solution. Namely, this chapter illustrates how the AQuA framework automatically

manages redundant components so as to continually adapt and optimise applications, during

runtime. The description explains AQuA’s main functionalities and shows the way they work

together in order to reach the system’s management goals. AQuA’s main functions include

system monitoring, learning, anomaly detection, component evaluation, adaptation decision

and component activation. The approaches adopted to design the management framework

and its main functional modules are discussed. AQuA was specifically designed for

managing enterprise systems built using component technologies. In particular, component

technologies based on contextual composition frameworks were targeted, such as Enterprise

JavaBeans or CORBA Component Model.
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Goals of this chapter:

• redundant components can be used to dynamically optimise system performance, as

well as other QoS attributes

• separating redundant components from each other and from the adaptation logic man-

aging them ensures system modularity and improves flexibility

• using an automatic management framework to adapt and optimise applications with-

out requiring human intervention increases system management efficiency and reduces

administrative costs

• the current expertise of human system administrators can be captured and used to au-

tomate performance management tasks

• data mining and machine learning techniques can be used to automatically infer per-

formance information on managed system components and to augment and improve

the system’s management adaptation logic over time
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3.1 Research Goals,

Proposed Solution and Scope

The presented research aims to enable complex software systems to manage themselves, so as

to dynamically self-optimise and adapt to changes in their internal configurations and exter-

nal execution conditions. The thesis goal is to propose a solution for reaching this aim and

exemplify how the solution can be implemented and used. The thesis also seeks to identify

and discuss the main challenges that must be addressed in order to provide a complete, fully

reliable management solution that can be employed in a real system scenario.

The proposed management solution is based on the alternate usage of multiple component

variants with equivalent functional characteristics, each one optimised for a different running

environment. Namely, in the proposed approach, different component implementations are

provided at runtime to supply equivalent functionalities based on different design and config-

uration strategies. Each component implementation strategy is optimised with respect to a dif-

ferent execution context. Part of the same approach, applications are enabled to automatically

analyse and select the optimal component strategies to use at anyone time, in each particular

execution context. A solution for meeting this goal is proposed based on the following require-

ments. First, different design and implementation variants for software components must be

available at runtime. If multiple component variants are not available, the system functions

normally, without being automatically optimised based on the proposed management solu-

tion. As a second requirement, the solution must provide a mechanism that is capable of auto-

matically alternating the usage of the available implementation variants. This activity must be

performed during runtime, so as to meet the software applications’ high-level quality goals,

at all times. The component redundancy concept is introduced for addressing the former solu-

tion requirement (section 3.3). The second solution requirement is addressed by proposing

an automated management framework, referred to as AQuA (Automatic Quality Assurance)

(section 3.9). AQuA’s role is to administer the available component variants, so as to capitalise

on their redundancy and continuously optimise applications, while constantly meeting the

system’s quality goals (e.g. performance goals: response times and throughputs). A proto-

type implementation of the proposed management framework is also provided, for the J2EE

component technology. The AQuA J2EE prototype shows how the proposed solution can be

implemented and used to fully-automate performance management tasks.

The thesis scope includes proposing the redundancy-based management solution and devis-

ing the AQuA framework for automating system management based on this solution. It also

comprises the AQuA J2EE framework prototype, showing how the solution can be imple-

mented and used. Nonetheless, a complete, optimal implementation of the proposed man-

agement framework is out of the thesis scope. The AQuA J2EE prototype presented as part of

the thesis work is intended to show how the framework functionalities can be implemented

and integrated together. Further research, development and optimisation work is required on

each of the framework’s management functions in order to produce a fully-functional, reliable

product. The runtime management of complex software systems involves highly complicated

procedures, with a myriad of interconnected aspects to consider. The thesis does not attempt

to solve all problems implied by a system’s dynamic adaptation and performance optimisa-

tion. Rather, the aim of this research is to set a direction for a feasible automatic management

approach, which can be subsequently extended and integrated with other approaches so as

56



to provide a complete system management solution. Extensive research efforts are currently

being carried out in related areas of the autonomic computing field, including system moni-

toring, policy-based management, data mining, machine learning, application adaptation and

evolution. The proposed management approach and framework provides an integration point

for bringing together the results obtained from these various domains and obtaining a com-

plete autonomic management solution. While the focus of the presented research is on per-

formance optimisation, many of the proposed concepts and functionalities can be applied for

managing other QoS attributes, such as availability and reliability.

3.2 Uniqueness of the Approach

This section discusses some of the key features of the proposed performance optimisation so-

lution. These features differentiate the proposed redundancy-based approach from related

management frameworks in the area.

First, an important characteristic of the provided optimisation scheme is that it maintains a

clear separation between the application’s business logic and the performance management

code. This feature increases system flexibility and manageability (subsection 2.6.2). An-

other important characteristic is that the presented management solution imposes no spe-

cific requirements on the component technologies used to implement the managed applica-

tions. Consequently, no major conceptual-level changes are needed when porting the AQuA

framework across component technologies or component technology providers. Though, each

particular AQuA implementation will clearly differ from other implementations, depending

on the targeted component technology and adopted design strategy. However, no extra-

requirements will be imposed on component developers or providers, as the AQuA frame-

work design allows it to manage any standard component. Namely, no detailed information

on the performance characteristics and/or resource requirements of the managed components

is necessary at deployment time. Also, it is not compulsory for multiple component variants

to be provided and available during runtime. Component variants can be acquired from mul-

tiple providers and added, modified or deleted during system execution.

The framework’s modular design allows for each of its constituent parts, namely the monitor-

ing, adaptation logic and component activation, to be independently modified, without affect-

ing the other functions. Thus, AQuA’s modularity allows for each of its functional modules to

be built separately and/or subsequently replaced without impacting on the other modules. As

such, AQuA’s adaptation logic can be designed based on whether a centralised, decentralised,

or hierarchical topologies (subsection 2.6.4). With respect to AQuA’s monitoring function, two

main instrumentation solutions can be adopted. These are application-level instrumentation,

based on component proxies, and server-level instrumentation, based on container intercep-

tors. For the two instrumentation solutions, the trade-off is between portability across ap-

plication servers and the effortless management of any new application on a certain server

(subsection 2.6.5). The AQuA J2EE prototype implemented as part of this thesis adopted the

server-level instrumentation approach. Consequently, no extra framework implementation

or installation efforts are required for managing new applications. When server-level instru-

mentation is used, the framework is implemented once for a certain application server and

then used without any further modifications for managing all applications subsequently de-
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ployed and run on that server. Nonetheless, the framework implementation can be configured

to meet the particular management requirements of each deployed application. Finally, var-

ious approaches are possible for implementing AQuA’s component activation function, for

performing component-swapping operations on running applications. The current solution

adopted for AQuA’s implementation was based on the hot-deployment facilities provided by

the application server platform.

Finally, a significant characteristic of the proposed management solution is that external clients

remain completely unaware of the management operations performed on the system at run-

time.

3.3 Component Redundancy -

Concepts and Terminology

The component redundancy concept is central to the thesis solution. Thus, a clear definition of

this concept is necessary to state the exact meaning and implications of this term, for the scope

of the presented dissertation.

Component redundancy is defined as the runtime availability of multiple component variants,

providing equivalent functionalities, but each one optimised for a different execution environ-

ment. The design and implementation strategy of each component variant is conceived so as

to be optimal under certain execution conditions. A software component’s execution condi-

tions include the incoming workloads, inter-component communication patterns, or available

software and hardware resources for that component. Software resources may consist of other

components and applications, such as relational databases, or of underlying threads and pro-

cesses. Hardware resources include the available CPU, memory, disk, or network bandwidth.

The component variants in the proposed solution are referred to as redundant components. All

redundant components that provide certain functionality are considered to be part of the same

Redundancy Group (RG) with respect to that functionality [30], [29], or [31]. Each RG exposes a

well-specified set of externally visible functions. This is referred to as the RG interface (Figure

3.1). The RG interface defines the set of RG functions that external clients can call on the RG.

Consequently, all redundant components in a certain RG must implement the RG’s provided

interface. Thus, any redundant component in a certain RG can be functionally replaced by any

other redundant component in the same RG.

In a more complex scenario, more than a single component can be used to implement the dif-

ferent functionalities of a RG’s interface (Figure 3.2). In such a case, each component would

implement one or more of the RG’s provided methods, so that any of the declared methods in

the RG interface is implemented by at least one component. A RG dispatcher is needed in this

case to correctly distribute incoming client calls to the respective component that is capable of

handling them. Even though feasible, this scenario was no further considered when develop-

ing the presented research solution.

Each redundant component in a RG should be optimised for a different running context. For

example, one redundant component could provide optimal performance under increased in-

coming workloads, while a different redundant component can be optimised for lower in-

coming loads. Performance optimisation is considered with respect to performance metrics
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such as response times or throughputs, but also as gains in resources consumption. It is also

possible for different redundant components in a RG to provide certain functionality at differ-

ent degrees or levels. As such, a RG can provide to its clients full-functionality or degraded

functionality, in order to cope with unfavourable execution conditions, such as resource con-

gestion, while still meeting its quality requirements. For this reason, redundant components

in a RG are defined to provide identical or equivalent functionalities.

A single redundant component providing certain functionality is assigned, at anyone time, for

handling a client request for that functionality. More precisely, the client request is forwarded

to an instance of the selected redundant component upon arrival. This aspect differentiates

the thesis’ solution from other approaches, such as N-version programming [5], [6], or agent-

based systems [47], where multiple component variants work together, or in parallel, towards

a common result.

In the presented solution, the selected redundant component that handles client requests at a

certain time is referred to as the active redundant component. The active redundant component

is the one the system currently uses, sending client requests to instances of that component.

Similarly, redundant components available in a RG but not currently used for handling client

requests are referred to as inactive redundant components. Redundant components can be

dynamically added, updated, or removed from a RG without disrupting the normal system

functioning.

If instances of the active redundant component perform poorly in a certain execution context,

the redundant component can be deactivated and replaced with an alternative member of the

same RG. This process is performed via emphcomponent-swapping, which is performed at

runtime without disrupting system execution. The component-swapping procedure can also

be applied in case the active component is detected to throw exceptions or introduce integra-

tion faults, such as deadlocks. In the presented solution, the application adaptation process is

based on anomaly detection and performance optimisation via component-swapping proce-

dures. Redundancy Groups (RGs) use this process to continually optimise themselves, adapt-

ing to changes in their execution environments and dealing with context-driven faults.

It could be argued that an alternative approach would be to specify all behaviours for all

possible execution conditions in a single, monolithic component, together with the logic for

selecting which behaviour to use at each time. However, using separate redundant compo-

nents for different running conditions provides radically improved modularity and flexibility

over the aforementioned approach. The reason is that the separate redundant components

are clearly isolated from each other, and from the adaptation logic that decides which one of

them to use at each point. Thus, redundant components providing system functionality can

be separately added, updated, or removed, without affecting the adaptation logic. Similarly,

adaptation logic policies can be independently added, modified, or removed from the run-

ning system, as needed. In short, the use of component redundancy facilitates the separation

between the application business logic and the system management logic. On the contrary,

building monolithic components optimised for all possible running contexts would be unfea-

sible in most cases. Most importantly, it would be unlikely for system developers and deploy-

ers to envisage all possible execution conditions under which the system will run. Secondly,

even in the unlikely scenario in which all possible running contexts could be known, a com-

ponent optimised for all contexts would be excessively hard and costly to design, implement

and maintain.

Regarding redundant components’ granularity (subsection 2.6.3), an important property of
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the proposed solution is that a Redundancy Group (RG) can contain atomic components, as

well as composite components or sets of components. For example, Figure 3.1 illustrates a RG

containing three redundant component of different types:

• a: A is an atomic component

• b: B is a composite component, containing sub-components B’ and B”

• c: C1, C2 and C3 form a set of components. Component C1 advertises (some of) the

same functionalities as components A and B do. However, in order for component C1

to provide its functionalities, as defined in its advertised interface, it requires function-

alities from C2, which in turn requires functionalities from C3.

As shown in Figure 3.1, redundant components A, B and C all implement the same RG inter-

face.

  
Redundancy Group (RG) 

 B 
B’  

B’’  

A 
I
n
t
e
r
c
e
p
t
o
r
 

Client  
Request 

C1 C2 C3 

a 

b 

c 

RG Interface  

Figure 3.1: granularity of redundant components:
a) atomic component; b) composite component; c) set of components

  Redundancy Group (RG) 

RG Interface 
- method_1 
- method_2 
- method_3 
- method_4 

 

RG Client 
Call Dispatcher 

Interface A 
- method_1 
- method_2 

Interface B 
- method_3 

Interface C 
- method_4 

Component 
A 

Component 
C 

Component 
B 

Client 
Call 

Figure 3.2: implementing the RG Interface with Multiple Components

Figure 3.3 shows how RGs can be used as components in a functional application. One redun-

dant component will be active in each RG for handling client requests. Changing the active

redundant component in a certain RG may require the use of RGs that were not previously

employed. In the Figure 3.3 example, changing the active component in RG1 from C1.1 to

C1.2 would cause the RG4 and RG5 to be utilised instead of the previous RG2 and RG3.
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Figure 3.3: using Redundancy Groups to implement a functional application

3.4 Using Component Redundancy to

Optimise Performance

The thesis proposes the use of component redundancy to automate the performance optimisa-

tion of component-based applications. Component redundancy contributes to the developed

management solution by supporting runtime modifications in the applications’ code and con-

figurations. Namely, the main idea behind the presented approach is to have multiple redun-

dant components prepared at runtime and only use the one that is optimal under the currently

executing environment. More precisely, a number of redundant components are provided and

made available during system runtime. Each component is optimised for a different range of

environmental conditions, such as incoming workloads or available resources. At any one

time, for providing certain functionality the adaptable system selects and uses a single redun-

dant component from the RG providing that functionality. The selected redundant component

is the one that is most likely to yield optimum performance under the targeted execution en-

vironment. If the execution environment changes another redundant component is selected

from the same RG, so as to optimise the application’s performance under the new execution

environment. This allows the software system to dynamically adapt to variations in its run-

ning environment and maintain its performance at optimal levels at all times. In certain cases,

knowledgeably alternating the use of redundant components optimised for different envi-

ronments can yield better application performance than any one of the individual redundant

components could provide (chapter 5). The alternative of merging all redundant components

and their management control logic into a single monolithic component, optimised for all pos-

sible environments, would prove in most cases an unfeasible solution (section 3.3).

At a general level, the goal is to simultaneously alternate the use of redundant components in

different RGs so as to obtain optimal application implementations and configurations overall,

and constantly meet system performance objectives. In this context, the availability of accurate

knowledge on the redundant components’ performance characteristics becomes critical for a

successful management process. The thesis introduces a learning mechanism for automati-

cally determining the optimal software configurations of each RG and each managed appli-

cation, for the targeted system and execution environment. The learning process is based on

analysing monitoring data collected for each available component and each specific software

application. An important characteristic of the proposed solution is that the learning process

executes while the application is run in the targeted execution environments. This is differ-
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ent from statically performing such information collecting processes on a testing platform.

The proposed solution allows for information on optimal system configurations in different

contexts to be optionally provided at application deployment time. Such information could

be initially obtained by testing the application offline, on the targeted execution platform. It

can also be acquired from previous experiences with the managed system, when the system

was executing in similar contexts. Such initial information can be used as a starting point for

adapting applications immediately after their deployment. In time, the learning mechanism

progressively validates and updates the initial information, based on accurate monitoring data

from the targeted execution context. Thus, the reliability of the performance information used

to take system optimisation decisions increases constantly over time. As soon as performance

information is available, the managed software applications can be dynamically adapted to

varying QoS requirements or execution conditions. This is achieved by accordingly changing

the applications’ optimal configurations, considering the targeted QoS requirements and cur-

rent running conditions.

In the proposed optimisation solution redundant components are used to dynamically adapt

software applications at two granularity levels. First, component redundancy is used to opti-

mise individual RGs. At this level, the optimal strategy is detected and activated for providing

a RG’s functionalities. This is equivalent with local optimisations of individual components.

At a higher level, component redundancy is used to optimise component assemblies or ap-

plications. At this level, the optimal configuration of a component assembly, consisting of

multiple adaptable components, is determined and activated. In this context, an optimal as-

sembly configuration refers to the optimal combination of active redundant components in the

RGs involved. As such, global system optimisation is achieved when the entire software ap-

plication is optimally configured.

In the targeted component technologies (e.g. Enterprise JavaBeans (EJB) - subsection 2.4.2,

[91]), components are typically deployed as a bundle of component implementation and con-

figuration files. Thus, redundant components can consequently differ at the component im-

plementation and/or the configuration levels. A component’s implementation represents the

business logic the component provides. Redundant components with differences at this level

can be obtained from different component providers. Component configurations, or deploy-

ment descriptors, are used to instruct the application server on how to manage components

at runtime. Variations at this level are specified by component deployers. Examples of re-

dundant components with variations at both the implementation and configuration levels are

presented in chapter 5 of the thesis.

In the context of the proposed redundancy-based solution, an important concept is that of

cross-points. Cross-points are defined by the performance characteristics of pairs of redun-

dant components and indicate the points where redundant components in a RG should be

swapped. More thoroughly, the ’cross-point’ term is defined for the scope of this thesis as fol-

lows. A cross point is an execution context in which the optimal redundant component in a RG

changes. Execution contexts are defined by the values of all performance metrics considered.

Cross points can be considered at different levels. At the finest grained level, a basic cross point

is considered between two redundant components only, with respect to a single performance

metric (e.g. response time). In this case, a cross point is the metric value at which the optimal

redundant component changes.

More general cross points can be subsequently calculated by comparing and analysing basic

cross points. Thus, when considering more than two redundant components in a RG, with
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respect to a single metric, a cross point is defined as the metric value at which the optimal

redundant component changes in that RG. Furthermore, in case more than one performance

metrics are considered, overall cross points are computed based on single metric cross points.

At the most general level, cross points delimit the execution contexts in which different redun-

dant components are globally optimal, with respect to a certain RG. In case different redundant

components are optimal with respect to different performance metrics, one final optimal com-

ponent is selected, based on various possible criteria. System administrators are responsible

for specifying the system’s high-level performance goals. Thus, they also define the criteria

for determining optimal redundant components. Namely, the optimal redundant components

are those that best meet the system’s high-level performance goals, at each particular time.

A selection criterion can be specified as sets of rules, indicating the conditions in which one

redundant component is considered optimal over other redundant components in a RG. For

example, a rule can state that a certain metric has precedence over the other performance met-

rics. For example, suppose a rule is defined for a RG, stating that response time has precedence

over CPU availability. Also suppose that the RG contains two redundant components, A and

B. In this example, if component A is optimal with respect to response time and component

B is optimal with respect to CPU consumption, then component A will be selected as glob-

ally optimal and possibly activated. More complex rules can be defined to calculate a global

optimality factor for each redundant component, based on multiple performance metrics. For

example, a weighted sum of performance values, one for each considered metric, can be used

to compute the optimality factor for each redundant component. Based on this, for each execu-

tion context, the redundant component with the maximum optimality factor is selected as the

optimal one in that context. Global cross points are those at which the globally optimal redun-

dant component in a RG changes, as a result of an alteration in one or more of the execution

context parameters.

3.5 Applicability of the Redundancy-Based

Performance Optimisation Solution

The presented thesis proposes using component redundancy for automating performance op-

timisation processes in component-based, enterprise systems. Part of this work, several sce-

narios were identified in which component redundancy can be applied for dynamically opti-

mising system performance. These scenarios were divided into three main categories, based

on the nature of the runtime variations that require the system to be adapted. Namely, vari-

ations can occur whether in the components’ execution contexts (subsection 3.5.1), QoS re-

quirements (subsection 3.5.2), or functional requirements (subsection 3.5.3). These scenarios

are discussed in more detail over the following subsections. In addition, a fourth possible

case can be considered, in order to deal with initial performance optimisation of complex ap-

plications. This scenario is likely to occur when optimising the performance of large-scale

applications, for the initial environmental conditions in which the applications are run. The

main reason behind this scenario is the considerable complexity of large-scale, distributed ap-

plications to manage. Namely, such applications are typically built using a considerable num-

ber of interconnected components. In principle, any large-scale application can be initially
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optimised, when its constituent components are being integrated or when the application is

being deployed. Nonetheless, system complexity might cause application optimisations to

prove to be a costly and possibly unreliable task to perform manually or offline. The situation

is exacerbated if COTS (Component-Off-The-Shelf) components are being used as part of the

application, as the implementation code may not be known in this case. Thus, the fourth adap-

tation scenario would be concerned with automatically finding initial application designs, im-

plementations and configurations that are optimal under the initial running context. When

using component redundancy, this process involves determining the optimal combination of

redundant components, one from each available RG, for yielding optimal overall application

performance in the initial deployment context. Even though valid, this fourth scenario is akin

to the one addressing adaptations to changes in the components’ execution contexts. In other

words, optimising the system to an initial execution context is similar to adapting the system

to dynamic variations in its execution environment. Therefore, the fourth adaptation scenario

is not separately discussed.

3.5.1 Using Component Redundancy to Adapt to

Varying Execution Contexts

The execution context of a certain component refers to the environmental conditions in which

the component is deployed and runs. A component’s environmental conditions are charac-

terised by the incoming workload on the considered component and by the software and

hardware resources available to the component.

The incoming workload on a component can be further characterised by several aspects, such

as the request load and request mix. The request load represents the number of incoming re-

quests per time interval. The request mix, or usage pattern, represents the type of incoming

requests and the order in which they arrive. The incoming workload on a certain component

is generated by the component’s clients. Clients can be external users, other software applica-

tions, or other components of the same application. Thus, for example, an EJB component’s

client can be a servlet in a web application, or a different EJB in the same application.

Also part of a component’s execution environment, are the software and hardware resources

available to the component for providing its functionalities. Hardware resources include CPU,

memory, network bandwidth and disk. Software resources can be part of the considered

software application (internal resources), or they can be external to the application (exter-

nal resources). Internal software resources for an application component are typically other

components in the same application. This situation can occur as a component can use other

application components to complete its tasks. External software resources can consist of other

applications, databases or file systems. Software resources a component uses can also be con-

sidered at different, lower system layers. Namely, a software component at the application

level may be mapped to resources at lower system layers, such as threads and processes in the

underlying Virtual Machine (VM) and Operating System (OS). These in turn can be mapped

to CPU, disk and memory usage at the hardware platform level.

Dynamic variations can occur in a component’s execution context, at any of the above soft-

ware and hardware levels. In effect, the performance characteristics of a software application

may substantially change with the variations that occur in its execution environment. Thus,
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a software application designed and configured for optimal performance in certain execution

environment might no longer be optimal when running in different execution environments.

As a consequence, dynamic changes in the initial environmental conditions of a running ap-

plication might result in sub-optimal performance behaviour of that application. Different

aspects of a component’s execution context can change over the component’s lifetime. Such

changes can arise as the component is integrated in different applications and run on different

platforms. In addition, environmental variations can dynamically occur while the component

is executing as part of the same, long-running system.

The thesis focuses on automatically adapting applications to changes that occur dynami-

cally, at system runtime. Possible dynamic changes in a component’s execution context in-

clude modifications in the component’s incoming workloads, or available software and hard-

ware resources. The number of client requests received per time interval may fluctuate over

time, causing corresponding variations in the amounts of required software and hardware re-

sources. Furthermore, modifications can arise in the functionality of a component’s clients.

This would in turn have a direct impact on the component’s usage pattern, or work mix.

Such situation can occur as a result of updates or versioning operations performed on a com-

ponent’s clients. Changes in the implementation of a component’s client can subsequently

impact on the component’s incoming load or usage patterns. Workload variations can directly

influence the amounts of available software and hardware resources a component can use.

Additionally, dynamic fluctuations in the available resources can occur independently from

changes in the incoming workloads. This can happen as a result of variations in the resource

usage of other software entities sharing the same underlying platform. For example, new ap-

plications can be deployed and run, or existing applications can be updated in a manner that

considerably impacts their resource usage patterns. In another scenario, resource availability

can change as a result of hardware failure or of resources being physically added to the man-

aged system.

The component redundancy concept can be used to build dynamic adaptation solutions that

address the optimisation problem in the context of varying environmental conditions. Such

management solutions are based on alternatively activating redundant components individu-

ally optimised for different execution contexts. An example scenario was implemented for the

EJB technology to test component redundancy applicability in the case of varying amounts of

available resources (i.e. network bandwidth). The example implementation and test results

are presented and discussed in section 5.1. Further examples are available from related work

in the area of dynamic component replacement for performance optimisation purposes (e.g.

[93], [3], [64], [101], [8], and [83]).

3.5.2 Using Component Redundancy to Adapt to

Varying QoS Requirements

Component redundancy can be used to accommodate changes in the QoS requirements of

an application’s components, during runtime. A component’s Quality of Service (QoS) at-

tributes include performance, reliability, robustness, availability and security. As discussed in

subsection 2.2.3, optimising one system QoS attribute may deteriorate another QoS attribute.

For example, performance optimisations can be achieved at the cost of application security or
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reliability. In addition to functional requirements, an application commonly needs to meet cer-

tain QoS requirements for its external clients. Application requirements can be formally repre-

sented as application or component contracts [91], that provide functional and QoS guarantees

to external clients. Even in cases where system requirements are not formally represented and

contracts are not explicitly signed with clients, certain requirements still have to be met for a

feasible system.

Global, application-level requirements for an externally-provided functionality map to

component-level requirements for the individual components implementing that functional-

ity. Consequently, if an application’s global QoS requirements change, the local QoS require-

ments on individual components accordingly change. QoS requirements can be modified for

example so as to favour security over performance or performance over reliability. Perfor-

mance can also be optimised with respect to different performance attributes, such as response

times, or throughput and the precedence of these attributes can vary over time.

Component redundancy can be applied for dynamically adapting applications to changes in

their required QoS levels. This is achieved by acquiring redundant components individually

optimised with respect to different QoS attributes, or QoS goals. At runtime, the redundant

components are alternately activated, so as to always match the system’s QoS requirements.

In other words, the redundant components used by an application change with the system’s

QoS requirements, during runtime.

3.5.3 Using Component Redundancy to Adapt to

Varying Functional Requirements

Component redundancy can be used to accommodate changes in the functional requirements

of an application’s components, during runtime. Such functional changes do not necessarily

refer to cases in which new functionalities are being added, or when deprecated functional-

ities are being removed from components. Rather, component redundancy can be used to

address cases in which certain functionality is only required for limited time intervals. For ex-

ample, logging or debugging functionalities, implemented as part of a component’s code, can

be temporarily activated to detect faulty components. Component redundancy can be applied

in this scenario by using two redundant components. Namely, one redundant component

only provides the ’normal’ functionality, whereas the alternative redundant component also

implements logging and/or debugging functions. The debugging-enabled redundant compo-

nent contains debugging-specific code inserted in between the ’normal’ code. In this scenario,

the debugging-enabled redundant components can be used for example to detect component-

level functional faults. More precisely, debugging information can be used to determine the

cause of a detected fault. If a fault is detected at the application-level, the debugging pro-

cess will help narrow down and pinpoint the fault at the component-level. Once a faulty

component is identified and subsequently replaced with a correct version, the normal (debug-

disabled) redundant component can be reactivated. The component-swapping process that

supports component redundancy in a runtime management system (section 3.12) can be used

in such cases to update faulty components with their correct versions. The component ver-

sioning topic and related challenges are out of the scope of the thesis. Nonetheless, the impact

on a system’s performance that component versioning might have can be automatically con-
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trolled by using the proposed component redundancy based solution. For example, suppose

that one application component is replaced with a newer version during runtime. This might

require the application to be re-optimised in order to accommodate the new component. The

reason is that the resulting integrated application may no longer perform optimally as a result

of having to use the new component version. An overall optimisation with respect to the new

component version being used would be needed in this case for remedying the situation.

System monitoring provides another example in which functionality may need to be dynam-

ically added to an application for a limited period. Specifically, monitoring capabilities may

sometimes need to be introduced at the application component-level, in order to identify per-

formance bottlenecks. For example, the COMPAS monitoring tool uses component-level mon-

itoring probes for extracting performance information from running applications. Monitoring

probes are automatically inserted in the targeted EJB classes at application deployment time.

At runtime, COMPAS is able to switch the monitoring probes between ’on’ and ’off’ states,

in order to minimise induced monitoring overheads. Based on this procedure, COMPAS can

automatically adapt its application’s instrumentation to changing monitoring requirements.

As such, when no performance anomalies are detected at the application level, only entry-

point components are being actively monitored. When a performance anomaly is detected,

monitoring is extended to all the components that are used by the entry-level component

for which the anomaly was detected [28]. However, even when in the ’off’ mode, COMPAS

probes can still induce some performance overheads at component level, as they are never

actually removed from the application. If this overhead becomes significant, component re-

dundancy can be used as an alternative method for switching component monitoring on and

off. This is achieved by providing two redundant components, only one of which contains the

monitoring probes. Switching the monitoring facility on and off is achieved in this case by

alternating the activation of the monitoring-enabled redundant component with the normal

(monitoring-disabled) variant. The monitoring-enabled redundant component contains an in-

strumentation probe in addition to its normal code. The advantage of using the component

redundancy based approach in this case is that monitoring probes can be completely removed

from the running system when the monitoring functionality is switched-off.

3.6 Business Application Scenarios

This section discusses several business application scenarios that would benefit from

redundancy-based performance optimisations. The redundancy-based optimisation solution

proposed in the thesis was designed for managing complex applications that experience sig-

nificant fluctuations in their running environments. Such dynamic fluctuations can occur in

an application’s incoming workloads and in the amounts of available software and hardware

resources. Workload is used in this context to indicate both the load on the application, as

well the application usage patterns. The application load is given by the number of incoming

client requests per time interval. An application usage pattern is determined by the particular

sequence of incoming client requests of various types. Hardware resources available to an ap-

plication include for example CPU, memory, disk, or network bandwidth. Software resources

can consist of other software applications, such as databases, as well as of threads, processes

and connections from the underlying middleware, VM and/or OS platform.
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The proposed redundancy-based adaptation solution targets scenarios in which an applica-

tion’s environmental conditions vary significantly during the application’s lifetime, but re-

main relatively stable for considerable periods between subsequent changes (e.g. more than

an hour intervals between changes). The technical scenarios relevant for the proposed so-

lution were presented in the previous section, showing how component redundancy can be

applied to address variations in a system’s execution context, QoS requirements and provided

functionality. This section discusses several business scenarios in fluctuations would occur

in a system’s running environment. The goal of this discussion is to show how businesses

experiencing the illustrated scenarios would benefit from the redundancy-based optimisation

solution.

A first set of relevant business scenarios are characterised by customer behaviour variations.

Such changes may influence the incoming loads and usage patterns on the supporting soft-

ware applications. Several business-oriented examples relevant for this category were identi-

fied, including regular and irregular behavioural changes.

Load fluctuations on a business application can regularly occur, depending on the time of

day, week, month, year, or around certain predictable events. For example, most enterprise

applications would experience increased numbers of customers during working hours and de-

creased customer activity over night. A more concrete example, banking applications would

have fewer customers over weekends and bank holidays than during normal working peri-

ods. Also, e-commerce applications would receive more requests prior to specific events than

during normal periods and possibly diminished demands immediately following such events.

As such, depending on the applications’ business specifics, higher demands may occur before

official holidays, sport events, cultural manifestations, or during sales periods. Anther exam-

ple, online travel applications would experience load fluctuations depending on the relevant

seasons. News agencies would typically receive increased request numbers during predictable

public events, such as referendums, or presidential elections.

Load fluctuations on a business application can also occur due to unexpected events. In the

e-banking application example, increased loads may be caused by large numbers of customers

deciding to extract funds, close bank accounts, or convert foreign currencies as a result of sud-

den, dramatic changes in the financial market, or other external events. E-commerce applica-

tions may have to deal with unpredicted load fluctuations caused by a product promotion, or

an unexpected market need. Incoming loads on online news agencies may grow dramatically

when unexpected events take place (e.g. security alerts, or natural calamities). In such sce-

narios, redundant components can be activated to provide limited functionality and consume

fewer resources. This allows the news agency application to support higher user loads on the

given available resources. Limited functionality in this example would mean the agency only

provides a static page with the most important news updates, rather than the normal interac-

tive, detailed and dynamic news content.

Besides fluctuations in the incoming loads, an application’s usage patterns can also dynami-

cally change over a system’s lifetime. Business scenarios representative for these cases include

the example scenarios provided above. Namely, an application’s usage patterns can dynam-

ically change during predicted periods (time of day, week, month, or year), or as a result of

unpredicted events. Causes triggering changes in load can also cause variations in an applica-

tion’s usage patterns. As additional examples, banking applications can experience increased

demands for particular services, such as transaction account listings, for a several hours, at the

end of each month. Such demands would be required in order to print out and send personal
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bank account or credit card statements to account holders. Brokerage applications would re-

ceive large numbers of requests for retrieving current stocks information at the beginning of

each working day. This pattern would occur as all brokers start by updating their local stock

information, so as to get up to date with the overnight changes. Such read-only usage patterns

on the brokerage application would be followed by mixed request for selling, buying and up-

dating prices of stocks on the market.

Another category of relevant business scenarios includes cases in which the amounts of re-

sources available to a managed application vary significantly over the application’s lifetime.

Business-related factors influencing this environmental characteristic include the acquisition

of new software or hardware resources, or the allocation of available resources to other dis-

tinctive business applications.

3.7 Redundant Implementation and

Configuration Examples

Several examples were identified to indicate how redundant implementations and configura-

tions would address the thesis’s performance optimisation problem. Cases in which perfor-

mance optimisations were required by dynamic environmental changes were exemplified and

discussed in the previous sections. The examples were selected to be representative for enter-

prise systems and the associated performance problems. This section focuses on showing how

different implementation strategies should be used to address the performance optimisation

challenges raised by such dynamic environmental changes.

A first example involves a component whose functionality is to repeatedly retrieve data from

a remote location. Two possible strategies are available to implement this component, as fol-

lows. One strategy uses a local cache, while the other repeatedly retrieves the requested re-

mote data upon each demand. Each redundant implementation can be optimal depending

on a number of external factors. The amounts of available resources of various types can be

a decisive factor when selecting the optimal redundant implementation. Namely, sufficient

local storage capacity and processing resources may favour the caching-based implementa-

tion solution. The redundant solution not using a local cache is optimal otherwise, provided

sufficient network bandwidth is available and no resource contention occurs at the remote

storage location (e.g., remote DB). In addition, the optimal implementation choice in this ex-

ample is directly influenced by the average hit rates on the local cache. More precisely, high

hit rates would favour the local cache usage, while low rates would render the caching-related

overheads inefficient. As such, the two redundant implementations can be used alternately in

response to changes in the available relevant resources and usage patterns. An example ap-

plication implementing the scenario described above is presented in more detail in section 5.1.

The example shows how the response times of two implementation strategies are affected by

network bandwidth variations. Test results were used to draw the response time curves of the

two implementation strategies in rapport to variations in the available bandwidth resources.

The results indicate that a cross point is given by the intersection of the two performance

curves. The cross point indicates the execution context in which the two redundant imple-

mentation strategies should be swapped to achieve optimal performance.
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Another example involving local caching choices is given by different possible usage patterns.

The example involves the same functionality that repeatedly retrieves data from a remote stor-

age location, such as a remote DB. Two possible implementation strategies are possible and the

optimal one critically depends on the way this application function is used. One implemen-

tation strategy involves sequentially retrieving the data from the remote DB, in response to

each individual request. In this case, every time the local application requires a piece of data,

the data is retrieved from the remote DB. Required data can consist of a customer’s account

information in a banking application, or a product’s details in an e-commerce application.

This implementation strategy is particularly suitable for cases in which only small amounts

of information are required from the DB, over certain periods. For example, only information

for several bank customers or e-commerce products is required during a certain transaction.

Nonetheless, a second possible usage pattern involves large amounts of sequential data being

required over most business transactions. For example, the account details of all bank cus-

tomers are retrieved at the end of each month, in order to print out and send monthly personal

bank statements. Or, information on all products in a certain catalogue category is required

for display in an e-commerce application. In this case, a different implementation strategy can

be used to optimise the data retrieval process. Namely, when the first data item is required

from the DB, an entire bulk of data can be retrieved together with the required item. The data

bundle is cached locally and readily available for future use. In this case, subsequent data

item requests find the required data already available in the local cache. Thus, this strategy

saves the resources needed for repeatedly accessing the remote DB. This strategy is based on

predicting the need for a large set of successive data items upon receiving the first data item

request. Based on this, data is pre-fetched from the remote DB and readily available when

the predicted requests are received. In this usage scenario, the cache-based implementation

strategy potentially yields better performance than the first strategy that did not use a cache.

Nonetheless, using the local cache to store pre-fetched data in usage cases when the data is not

actually required causes unnecessary resources to be consumed. Thus, using a local cache in

this case may not be the optimal strategy. Hence, the optimal implementation strategy directly

depends on the way the targeted application function is used during runtime. Consequently,

dynamic variations in the runtime usage patterns will require corresponding changes in the

implementation strategy used. Alternating the use of the two redundant strategies so as to

match the current usage patterns can provide optimal performance at all times.

Redundant component applicability is not limited to enterprise systems, but can be used to

optimise applications from different domains. For example, different redundant algorithms

can be used in scientific applications to meet various performance and processing resource re-

quirements, as well as to react to changes in the application usage patterns (e.g. characteristics

of the data sent to the scientific application for processing) [93]. Another example, redundant

solutions can be adopted for storage applications and used alternately in response to usage

pattern variations. The example provided in [101] shows how storage solutions based on re-

lational DBs and LDAP directories are optimal depending on client usage patterns. Namely,

a directory-based storage support is optimal for mostly read access types, while relational

database solutions are optimal for mixed read and write access patterns.

Besides differences in the possible implementation strategies, optimisations can also per-

formed at an application’s configuration level. As such, caching and pooling configurations

can be dynamically tuned so as to best match the current execution conditions, at all times.

Such configurations can include cache and pool sizes, component instance lifetimes, or resiz-
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ing policies. Dynamic configurations can also be envisaged to optimise the transaction types

used for business sessions, depending on the current usage patterns. As such, in read-only

usage scenarios, data can safely be cached locally without the risk of becoming obsolete. In

this case, resources needed to synchronise local data with the database before and after each

operation are saved. Nonetheless, in a mixed read-and-write usage scenario, various transac-

tions both read and write data to the database. In this case, locally cached data risks to become

outdated and should consequently be re-periodically synchronised with the shared DB. The

optimal transaction and synchronisation policy critically depends on the current application

usage pattern. Thus, the caching, pooling or transaction configurations should be dynamically

changed so as to match the current application usage patterns. Redundant component config-

urations can be prepared and alternately used for this purpose. For certain component tech-

nologies, such as J2EE and CCM, the components’ business logic is clearly separated from the

middleware-related management services (e.g. life-cycle, transactions, or security) (subsection

2.6.2). In these cases, configuration settings at the middleware service level are specified via

the components’ deployment descriptors. These descriptors are generally xml documents that

are bundled together with the component implementations into deployable component pack-

ages. In such cases, the deployable packages are considered as the basic redundant entities,

with possible differences at both the implementation and configuration levels. An example

scenario involving redundant configurations was implemented and tested as part of the thesis

experimental work. The example shows how caching configurations are dynamically modi-

fied so as to be optimal under different workloads (section 5.2).

The redundant implementation and configuration strategies exemplified above pertain to

adaptation scenarios that respond to execution context variations. Example scenarios also

exist for using redundant strategies in response to functional requirement variations. As such,

cases in which performance is traded off for more extensive functionality can be envisaged.

For example, logging or debugging functions can be added to a component’s normal func-

tionalities, in order to track the component’s activity and/or detect bugs. Such additional

functions would detriment the component’s performance, but may still be desirable in certain

cases, for limited periods. Redundant components with normal functions and with added de-

bugging functions can be alternately employed to address such dynamically changing func-

tional requirements. As another example, redundant components with limited functionality

may be used to address resource contention cases, where the normal component functionali-

ties would be impossible to provide. Providing reduced services may be a desirable alterna-

tive to a completely unavailable service. In this case, redundant components provide different

levels of service, with different resource utilisation requirements. The redundant component

used is selected based on the current resource availability of the running environment.

The redundancy based adaptation mechanism can also be used to manage QoS attributes other

than performance. For example, system reliability can be improved by using redundant com-

ponents as functional backups for running components identified as faulty. Certain types of

functional faults can be discovered at runtime in an application-independent manner. This can

be achieved by catching thrown exceptions, detecting deadlocks, or sensing serious memory-

leaks. Available redundant components can be used in these cases as replacements for the

faulty components, until updated component versions are available to correct the existing

faults. The presented examples show how the redundancy-based solution can be employed to

address different adaptation requirements, at different system levels, in a uniform way.
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3.8 Component Redundancy Costs

Cost-related concerns may be raised in association with the proposed redundancy-based op-

timisation solution. It may be argued that not many organisations would have the luxury of

deploying multiple components that have identical functionality and different implementa-

tion characteristics. This is indeed a valid point that must be taken into account when adopt-

ing a redundancy-based optimisation solution. A trade-off must be considered between two

major costs, as follows. On one hand, there is the cost of acquiring multiple redundant com-

ponents and providing the system management and adaptation support. On the other hand,

there is an associated cost incurred by a non-optimal system, maybe even to the point of loss

of availability. A successful business scenario is one whose redundancy-based management

solution’s cost is largely exceeded by the revenues in performance and availability obtained

by subsequently utilising the solution. In other words, a redundancy-based solution should

be implemented in case the loss of revenue caused by running a non-optimal system is greater

over time than the cost required to provide redundant components for the essential system

parts.

The redundancy-based optimisation solution proposes a flexible way to performing system

adaptation operations. It aims to provide improved support for system adaptation operations

that are (or should be) already carried out at present, in order to avoid loss of business revenue.

Namely, in many cases, no single component implementation or configuration exists that pro-

vides optimal performance under all possible execution scenarios. If this situation is detected

at component design time, developers will attempt to implement different behaviours, each

one optimised for a different scenario. All behaviours would be written as part of a single

component and a certain if-then-else construct would be used to select amongst them, at run-

time. In this case, all the supported behaviours, along with the adaptation logic for selecting

which behaviour to use at each point are mingled in one single monolithic component. This

approach is highly inflexible and proves rather costly and error-prone to manage. In this case,

adding, deleting or modifying the (if-then-else) adaptation logic and/or various behaviours

becomes an unnecessary complicated task. Furthermore, at design time, it is impossible to

envisage all possible configurations, workloads and platforms under which a component will

run during its entire lifetime. A component’s behaviour needs to be seamlessly adaptable to

unexpected changes in its running environment. Adding, deleting and modifying component

behaviours while the system is running is hardly possible with monolithic components, but

can be achieved when using redundant components. A redundancy-based management so-

lution can allow component variants to be dynamically added, without interrupting system

functionality. The AQuA management framework is proposed to automate system optimisa-

tion tasks, by knowledgeably swapping redundant components at runtime.

In a possible scenario the system does not initially make use of redundant components. In

this case, functionality is provided by a single component implementation, as in any ’normal’

system. This scenario is supported by the redundancy-based solution, as it is not compulsory

for multiple redundant components to be available at runtime. Subsequently, supposing that

while the system was running, it was observed that in several execution environments the cur-

rent system configuration performance was unexpectedly poor. If this situation was rendered

unacceptable from a business perspective, a new component can be deployed for optimising

system performance in the detected cases. This is a viable choice if the cost of acquiring the

new component is evaluated to be lower than the cost of maintaining the system unchanged.
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In this case, continuing to run a non-optimised system would possibly result in loss of busi-

ness clients and revenue. It can also lead to an inefficient use of system resources, which may

in turn affect other business applications on the same platform. In this case, replacing an inef-

ficient component with a new one may solve the initial performance, availability or reliability

problems. Nonetheless, such system adaptation may also induce new quality or functional-

ity problems, for previously satisfactory execution scenarios. As such, the redundancy-based

adaptation solution proposes maintaining the two redundant components available and pro-

viding the ability to alternate their use so as to provide optimal system behaviour. It can also

be argued that acquiring a new component which is only optimised for a certain execution en-

vironment is less costly than ordering a new complete replacement component that optimally

handles all execution scenarios. In addition, completely replacing a partially-working compo-

nent may also be more risky than only replacing the functionality of its faulty parts. This is

because a complete substitute (e.g. a new COTS component) may also replace the functional

component implementations that have already proved to work in the current system context.

In addition, an important point related to component redundancy costs is that, in some cases,

providing multiple component variants is not necessarily expensive. For example, redundant

components can merely differ in their deployment configurations (e.g. section 5.2). In such

cases, the cost of providing multiple redundant components is insignificant, as it merely im-

plies different deployment descriptor settings.

Another possible scenario is that in which the redundancy-based management framework is

used to support component versioning operations. This process involves the complete re-

placement of current system components with newer, updated versions (e.g. [77]). Such op-

erations may be desirable in order to add new functionality, fix a detected bug, or provide

better performance. The redundancy-based solution can support the component versioning

process so as to minimise risks and increase system reliability. Namely, considering the case

in which the system works correctly under the current configuration, but is non-optimal. For

this reason, a new component version is acquired and deployed to optimise the system. In a

typical component versioning scenario, the old component version is simply discarded. When

the redundancy-based management is employed, the old component version is also kept, as

a redundant component variant. The reason is that there a situation may occur where the

new component version proves to be incorrect or not integrate properly with the rest of the

application. Even if the new component was thoroughly tested, the incorrect or non-optimal

behaviour may have not been detected during the static testing procedures. If this happened,

the redundancy-based management framework could detect the problem and consequently

reverse the system to its initial configuration. The old component is already known to work,

even if performing poorly in certain scenarios, or providing limited functionality. When the

new component version is determined to meet its functional and QoS requirements the old

redundant component can safely be removed from the system, as in the typical component

versioning approach.

3.9 Overview of the AQuA Framework

A management framework was devised to support the component redundancy concept and

automatically optimise component-based system performance. The developed framework is
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referred to as AQuA (Automatic Quality Assurance). AQuA’s goal is to enable applications to

fluidly mould to their constantly changing running environments. For this purpose, AQuA

automatically optimises and adapts applications to variations in their execution environments

so as to maintain system performance levels optimal at all times. Although the current focus is

on managing system performance and availability, the general concepts and design of AQuA

can be extended to support additional system quality attributes, such as dependability.

The AQuA framework was devised as an approach towards automating the performance

management of complex, component-based software systems. The proposed solution is based

on the tested assumption that there are frequently no unique component implementations or

configurations that can yield optimal performance under all possible execution environments

(e.g. [30] and [33]). Based on this consideration, the thesis proposes the use of component

redundancy to address the problem and permanently provide optimal system implementa-

tion and configuration solutions. The AQuA framework was developed to capitalise on com-

ponent redundancy and automate system performance management. The framework was

designed to support and manage redundant components, using them to continuously opti-

mise and adapt software applications at runtime. As such, AQuA dynamically modifies the

managed applications’ implementations so as to optimise them for the current environmental

conditions and persistently meet application performance goals.

The AQuA framework aligns with the autonomic computing initiative proposed by IBM for

automating management processes in complex software systems. It also conforms to general

management frameworks proposed in related literature, such as in [72], [43], or [54]. Thus,

the main management functionalities provided by AQuA involve system monitoring, perfor-

mance anomaly detection, component evaluation, adaptation decision and component acti-

vation. The performance anomaly detection, component evaluation and adaptation decision

functionalities form AQuA’s adaptation logic. The adaptation logic is used to decide on the

application adaptation strategies that are to be taken based on the available information. A set

of decision policies are specified as part of the adaptation logic to express the desired system

management behaviour. At a design level, AQuA’s management functionalities are grouped

into three main logical modules, namely the monitoring and detection, evaluation and decision and

component activation modules (Figure 3.4). The functionalities these modules provide enable

self-managing software systems to:

• Monitor themselves and their execution environments during runtime

• Analyse collected monitoring data and detect performance problems

• Evaluate available adaptation and optimisation alternatives

• Decide on changes to perform in order to overcome detected problems and improve

system performance

• Dynamically enforce taken decisions by modifying running applications

The monitoring, adaptation logic and action functionalities are interconnected in a closed

control feedback loop (Figure 3.4). In short, the monitoring module collects performance

data from the running application. Collected data is analysed and performance anomalies

detected or predicted. The available optimisation solutions are evaluated and an adaptation

decision taken. Consequently, adaptation decisions are enforced into the running application

by means of redundant component activations. The application is subsequently re-monitored
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and re-evaluated for assessing the benefits of the implemented adaptation strategy. This way,

AQuA can learn and improve its management behaviour for each particular application, over

time. Special-purpose evaluation and decision logic is used to address potential stability

issues, which may be induced by the adaptation feedback-loop.
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Figure 3.4: architectural overview of the AQuA framework

The main roles and functionalities of the AQuA framework are presented over the following

sections. A framework prototype, AQuA J2EE, was implemented in order to test the way these

functionalities work together for managing the performance of J2EE applications (chapter 4).

AQuA’s modular architecture allows for each of its functional parts to be designed and im-

plemented independently, as well as subsequently replaced without affecting the other mod-

ules. Thus, various strategies can be separately selected for detecting performance problems

and their causes, defining the adaptation logic, or implementing the component activation

functionalities. As such, various instrumentation approaches can be adopted for supporting

AQuA’s monitoring function. Also, diverse centralised, distributed, or mixed solutions can be

devised for AQuA’s adaptation control topology. The adaptation logic can be implemented

based on decision policies, plan-based, or goal-oriented schemes. Multiple solutions are pos-

sible for enabling AQuA to perform dynamic component-swapping operations that remain

transparent to its external clients. The goal of the thesis is to propose a redundancy-based

solution for the automatic performance optimisation of complex component-based systems.

Part of this objective, the thesis also seeks to provide a proof-of-concept design and imple-

mentation for the proposed solution. The thesis does not attempt to provide an optimal, fully-

functional management framework product. The implemented framework prototype shows

how the redundancy-based solution works for automatically managing component-based en-

terprise applications. Further, any of the framework’s functional modules can be augmented

and developed towards obtaining a robust solution for a real management scenario.
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3.10 Runtime Monitoring

AQuA’s monitoring functionality is responsible for collecting runtime data from the managed

components and their execution environment. This implies that data is collected exclusively

for the active redundant components. Monitored events can be collected from running ap-

plications and used to calculate the monitoring metrics of interest. For example, method in-

vocation and method return events can be intercepted and analysed for this purpose. These

events can be used to compute incoming workloads and performance data such as average

response times and throughputs. Component instantiation or removal events can also be ob-

tained from the running system. These events can be used to indicate to current number of

instances that are available at each point for each application component. Monitored data

on the applications’ running environments includes the amounts of available resources, such

as CPU, memory, disk, or network bandwidth. Monitoring data is used for detecting per-

formance anomalies and important variations in the components’ execution environment. In

addition, as part of AQuA’s learning function, monitoring data is stored and analysed so as to

infer higher-level information on the quality characteristics of the managed redundant com-

ponents.

Two main implementation strategies can be adopted for instrumenting the system and acquir-

ing runtime monitoring data. These are application-level instrumentation, based on compo-

nent proxies, and server-level instrumentation, based on container interceptors (Figure 3.5).

For the two instrumentation solutions, the trade-off is between portability across application

servers and the effortless management of any new application on a certain server (subsection

2.6.5). Namely, the proxy-based solution is portable across application servers, but requires

an instrumentation effort for each new managed application. On the other hand, the server-

level instrumentation must be reimplemented for each different application server used, but

is subsequently available for all managed applications deployed and run on that server. A

similar choice is available for implementing the component-swapping function, to use either

application-level proxies to indirect client calls to the currently active redundant component,

or to modify the application server containers to perform such operations. The server-level in-

strumentation approach was adopted for the AQuA J2EE prototype, which was implemented

as part of the thesis experimental work (chapter 4).

Figure 3.5: possible instrumentation approaches:
a - container level; b - application level
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3.11 Adaptation Logic

AQuA’s adaptation logic uses runtime monitoring data to automatically find optimisation so-

lutions to detected performance problems. In the context of the proposed redundancy-based

solution, the adaptation logic decides which redundant components should be activated and

when, in order to optimise application performance. The decision process involves two main

activities, namely, accumulating and processing system information. The type of information

acquired and the manner in which it is analysed depend on the particular aim of the different

types of adaptation logic involved. Specifically, AQuA’s adaptation logic is used for different

purposes. These include the performance anomaly detection, the component evaluation and

the adaptation decision functions. In short, anomaly detection logic is used to identify and/or

predict possible performance problems. Component evaluation logic is used to identify and

propose remedial solutions to identified performance problems. For this purpose, the eval-

uation logic assesses the available redundant components and proposes the optimal ones for

activation. Finally, adaptation decision logic is used to evaluate the available optimisation so-

lutions overall, and conclude on the adaptation actions to be carried out in the system.

System information is required to support all the aforementioned adaptation processes. As

such, runtime monitoring data is collected and analysed in order to support the performance

anomaly detection process. Monitoring data on the system’s current status and information

on the redundant component’s performance characteristics are used for the component eval-

uation process. More precisely, first, information is acquired on the performance character-

istics of the available redundant components. This information describes the components’

respective behaviours, with respect to performance, in various execution contexts. Addition-

ally, monitoring data on the current execution environment of managed components must

also be obtained. The component evaluation process analyses the available information and

determines the optimal redundant components, in the targeted execution contexts. Perfor-

mance information on redundant components is obtained from collected runtime monitoring

data and then processed and stored in formal component descriptions (subsection 3.11.2 and

section 3.13). Finally, the adaptation decision process is based on monitoring data from the

framework’s control feedback loop, as well as on history information on previously taken

adaptation decisions and their outcomes. To summarise, component description information

along with monitoring data from the current system and its running environment are used as

input to AQuA’s adaptation logic. The available input information is critical to support the

performance optimisation decision process.

Two main approaches can be considered with regard to the control topology of AQuA’s adap-

tation logic (subsection 2.6.4). These are based on fully centralised or decentralised control

architectures. Mixed solutions are also possible and indeed desirable in most cases for com-

bining the benefits of the centralised and decentralised solutions. First, the centralised approach

can be adopted to globally analyse, evaluate and adapt the entire application. In this case, in

order to optimise a certain business transaction, all RGs involved in implementing that trans-

action are evaluated in a centralised manner. The optimal combination of redundant com-

ponents, one from each RG involved, is selected for activation. The redundant components

to activate are selected so that the entire considered transaction is optimal overall. The fact

that a certain RG can be involved in multiple, separate transactions, each one with different

performance requirements, also needs to be considered when selecting the optimal redun-

dant component to activate. Various analytical methods can be adopted when considering
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the centralised management approach (subsection 2.6.4). For example, graph optimisation

techniques can be applied to find the most favourable application configuration based on a

centralised application model. Another possible approach is to apply expression optimisa-

tion methodologies such as the ones used in relational databases for query optimisations [14].

Nonetheless, when considering large-scale component-based applications, global optimisa-

tions may not always be needed. Evaluating an overall application, potentially consisting of

hundreds of components, whenever an individual component or a group of components does

not meet performance expectations, might induce unnecessary overhead and not scale well.

Therefore, a second approach is to implement AQuA’s adaptation logic in a decentralised man-

ner. In this approach, if a problem is detected at an individual component level, the problem

is managed locally, by means of redundant component replacement. Thus, only components

exhibiting performance problems are analysed and affected by local optimisations. This ap-

proach is potentially more scalable than the centralised one, as it avoids repeated and possibly

unnecessary optimisations of the entire application. Nonetheless, exclusively concentrating

on local optimisations might lead to a non-optimal global application. Also, certain problems

such as deadlocks, oscillating states or chain reactions, cannot be detected or solved at an in-

dividual component level. Hence, a more high-level view is needed to detect and solve such

cases.

For the aforementioned reasons, a mixed solution is optimal for the adaptation logic control

topology, combining the benefits of both centralised and decentralised approaches. For this

purpose, a hierarchical topology can be designed for the adaptation logic, as a combined solu-

tion which is both scaleable, as well as capable of achieving the system management goals. In

this combined approach, framework instances with different scopes are organised in a hier-

archal manner. Possible management scopes include the single component-level, component

group-level and global application level. In this scenario, detected anomalies can be man-

aged locally and/or signalled vertically up the management hierarchy to the global level. A

clear protocol must be specified in this case for allowing management instances with differ-

ent scopes to communicate. This approach allows for local, component-level anomalies to be

solved locally, when possible, while also supporting global optimisations, when necessary.

Framework management instances at various hierarchical levels can be dynamically activated

or deactivated, in order to reduce overheads, while meeting system management goals.

Another combined approach is possible for adding global management capabilities to a decen-

tralised solution. As with the previous, hierarchical approach, local management operations

are performed at the individual RG level, independently from other RGs. Also as before, a

separate framework instance is created for this purpose to locally manage and optimise each

separate RG. Global system optimisation is achieved in this solution by enabling the local

framework instances to communicate and combine their actions. The communication protocol

and local framework behaviour must be designed in such a way that the emerging manage-

ment behaviour provides global optimisation solutions.

The current AQuA J2EE framework prototype uses anomaly detection, component evaluation

and adaptation decision functionalities with exclusively local, component-level, scopes. This

means that each individual RG is being optimised separately from other RGs. One of the previ-

ously described approaches can be adopted and added to AQuA’s implementation for achiev-

ing global optimisation solutions. Figure 3.6 shows an overall view of the way AQuA J2EE

is integrated with an EJB server. As indicated in the figure, multiple framework instances

are created, one for each managed component. Nonetheless, instrumenting and managing
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all application components at all times might not always be necessary. The unnecessary per-

formance overheads can be avoided by enabling AQuA to only manage a selected subset of

application components. The current AQuA implementation allows system administrators

to statically specify the set of EJB components and methods to be managed. This function-

ality can be augmented so as to also support dynamic or automated selection of managed

components. With this approach, framework instances are only created to manage selected

components, as specified in AQuA’s configuration settings. All framework instances use the

same type of control cycle for managing the components for which they were created. Control

cycles include monitoring and detection (M), evaluation and decision (E) and component ac-

tivation (A) functionalities, working in a feed-back-loop manner.

AQuA’s adaptation logic was designed based on decision policies, as described in the follow-

ing subsection. The adaptation logic and corresponding decision policies can be divided into

three main categories, based on the functions they need to provide. These are the performance

anomaly detection (subsection 3.11.3), component evaluation (subsection 3.11.4) and adapta-

tion decision (subsection 3.11.5).
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Figure 3.6: decentralised, component-level management: M - monitoring and
detection, E - evaluation and decision, A - component activation

An important issue that arises with respect to AQuA’s adaptation logic is the trust that can

reliably be placed on a framework’s automated management functionality for successfully

adapting software systems. As pointed in section 2.6.6, an expected scenario is one in which

a human manager initially performs such tasks, assisted by AQuA’s automated monitoring

and basic anomaly detection facilities provided. Subsequently, AQuA’s component activa-

tion functionality can be used, via a special-purpose management GUI, to manually enforce

taken adaptation decisions. In succeeding phases, the framework is progressively enabled to

take automatic adaptation decisions. First, basic decision policies start to be specified, so as

to automate simple administrative tasks. Over time, AQuA’s adaptation logic is gradually ex-

tended, so as to automate increasingly complex management tasks. Thus, human decisions are

steadily replaced by automated policies. The final goal is to automate as much of the adapta-

tion decision process as possible. The goal is to achieve an automated management behaviour

that was the same or better than in the case human system managers were in charge. When
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this is attained, the automatic system adaptation framework will provide a less costly and less

error-prone solution to system management. This goal is pursued by progressively defining

AQuA’s adaptation logic, based on repeated system observations and management experi-

ence. Behavioural patterns that are clearly and repeatedly observed in the human administra-

tors’ management behaviour are formally represented as policies in AQuA’s adaptation logic.

AQuA subsequently uses these policies to automatically suggest, or take, simple adaptation

decisions. Suggested adaptation decisions may initially need to be verified and confirmed by

a human administrator, before they can be enforced into the running system. Initially, basic

adaptation decisions will solve common, unambiguous situations. More complex policies are

incrementally added in time, enabling the adaptation module to automatically deal with more

complicated, unpredictable conditions. AQuA’s learning process can be performed by a hu-

man manager, based on their observations and expertise. In a more complex scenario, decision

policies can be automatically inferred by AQuA’s adaptation module itself (supervised by a

human manager) based on automated data analysis and policy specification processes (sub-

section 3.13).

The current design of AQuA’s adaptation logic is based on decision policies, further discussed

over the following subsections. Other approaches are also possible for implementing the

adaptation logic, such as based on activity plans or goal-oriented schemes (subsection 2.6.6).

AQuA’s design modularity allows for any of its functional parts to be independently modified,

without affecting the other modules.

3.11.1 Decision Policies

Decision policies are sets of rules that dictate the actions to be taken in case certain conditions are

satisfied. In AQuA, decision policies are used to implement the framework’s adaptation logic,

for taking performance management decisions. In other words, decision policies are used to

specify AQuA’s adaptation logic and coordinate its management behaviour during runtime.

This approach clearly separates the application management strategies represented by deci-

sion policies from the application data and business logic. As a consequence, human system

administrators can use decision policies to formally specify their management expertise, in a

format that automated management frameworks can interpret. In addition, specifying adap-

tation logic via decision policies does not require a thorough understanding of the underlying

framework mechanisms and implementation. Policies can be added, modified or deleted inde-

pendently of other AQuA functionalities or implementations. System administrators can also

use decision policies to specify high-level management goals, such as system performance or

reliability objectives. Thus, AQuA’s decision policies are designed and configured separately

for each managed application, so as to serve the specific application goals. Management goals

can be specified in terms system attributes and their corresponding value ranges. For example,

performance goals can be stated in terms of response times and throughput values. A criti-

cality factor can also be associated with a goal, or goal attribute. The criticality factor would

indicate the importance of each goal with respect to other goals. Thus, criticality factors would

allow certain goals to take precedence with respect to the other goals, thus solving conflicting

situations in which different adaptations are needed to achieve separate goals.

Decision policies, or rules, are split into two main categories: basic rules and high-level rules.

The separation is based on the decision policies’ management scope, or level at which they
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operate. Basic rules control the managed software application. They react to events in the sys-

tem by evaluating the events’ relevance and computing remedial solutions. High-level rules

are used to control the behaviour of basic rules. They analyse the basic rule behaviour, so as

to detect and rectify undesirable management behaviour. Thus, high-level rules can decide

when it is necessary to interrupt a basic decision process. For example, a basic management

procedure can be suspended in case it became too costly (in time or in consumed resources)

or seemed to have entered an infinite loop, such as an oscillating state or a chain reaction. The

basic rules’ management behaviour is evaluated by analysing the state of the basic decision

process, as well as the way it evolves over time. For example, a simple high-level policy could

state that a basic decision process will be interrupted if it took more than a certain amount of

time to compute without reaching a conclusion. In a more complex scenario, a higher-level

process records a history of the adaptation decisions taken by the basic process. A high-level

policy subsequently analyses the recorded history and identifies any cyclical patterns in the

basic decision process. The basic decision process is interrupted, and/or updated, in case an

undesired pattern was discovered in its management actions. The current framework proto-

type provides support for specifying and interpreting basic rules. Several basic rules were

defined to implement the prototype’s adaptation logic for the performed tests (section 5.2).

High-level policies were not implemented in the current framework prototype version.

Basic rules can be further classified into different types, depending on their intended func-

tionality. Four such types were identified for AQuA’s adaptation logic, as follows. The four

basic decision policy types are described in more detail over the following subsections. First,

anomaly detection rules are used to analyse monitoring data and discover performance prob-

lems. They can also sense important variations in the system performance, or system exe-

cution environment. Second, component evaluation rules are used to determine the optimal

redundant components for a given execution environment. Their objective is to evaluate the

current system state and find optimal solutions for overcoming detected or predicted prob-

lems. In a third category, adaptation decision rules are used to take final decisions on the system

optimisation solutions. Final optimisation solutions are subsequently enforced into the run-

ning system. A fourth, separate category of rules was defined for specifying AQuA’s learning

capability. The goal of the learning function is to allow AQuA to improve its management

behaviour over time. Rules in this category are used for inferring new facts, or information,

from existing, collected data. Enabling the management framework to automatically improve

its knowledge and behaviour avoids imposing extra requirements on system administrators,

component providers, or testers. In its current design, AQuA uses a learning process to ac-

quire accurate information on the available redundant components. The manner in which this

learning functionality was designed, implemented and tested is discussed in sections 3.13,

4.5 and 5.3. Additional learning capabilities can be devised for AQuA, in order to automati-

cally update its adaptation logic and consequently improve its management behaviour. Such

learning processes would be implemented based on a closed control feedback loop, such as de-

signed as part of AQuA’s general architecture (Figure 3.4). Part of the feedback loop, runtime

monitoring data is analysed in order to assess the results of previous system adaptations. The

framework’s decision logic can be accordingly modified and tuned in effect. As such, learning

procedures can be implemented to automate the creation and configuration of rules of various

types. Namely, learning strategies can be designed for automatically managing component

evaluation, or adaptation decision rules. Theoretically, any management rule, whether at the

basic or at the higher levels can be automatically updated and improved based on a learn-
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ing process. To extrapolate, the learning processes themselves can be automatically tuned by

higher-level learning procedures. The level of complexity for such learning functions should

be limited depending on the systems’ management requirements and the costs involved.

3.11.2 Component Descriptions

Component descriptions are used to store and provide non-functional information on the man-

aged components. This can include information on a component’s performance character-

istics, or on other attributes, such as reliability, security, or correctness. In the proposed

redundancy-based management solution, each redundant component has its own component

description associated with it. The information stored in each component description allows

the system management process to evaluate the available redundant components and accord-

ingly take optimisation and adaptation decisions. The available component information is

critical when selecting the redundant components to be activated in the system in a certain

context.

Component performance information is essential for the proposed redundancy-based optimi-

sation solution. This information is acquired by repeatedly collecting and analysing monitor-

ing data samples, on the relevant performance-related metrics. Monitored metrics of interest

include response times, throughputs, workloads and resource availability. The process can

be initially performed offline, whether in testing environments or on the targeted execution

platform. The information acquisition process can be subsequently extended during runtime,

when more relevant and accurate monitoring data can be collected. The actual process of

analysing monitoring data and inferring information on the components’ performance char-

acteristics can be initially performed manually and then progressively automated. Conceptu-

ally, this process is carried out as follows.

Performance data samples are obtained by AQuA’s monitoring module, at runtime. Col-

lected data is subsequently processed and formally represented as a component description,

or metadata, facilitating its automatic interpretation, analysis and modification. Component

providers can optionally supply initial component descriptions, at deployment time. An initial

component description can indicate the implementation strategy used, or the running context

for which a component was optimised. For example, a component description can specify

that the component implementation was optimised for running under increased workloads

and having certain amounts of CPU resources available. A component description can also

provide relative values for performance attributes such as delay or throughput, and/or their

sensibility to execution context variation. For example, a component description can indicate

that the response time for a certain component method increases exponentially with the in-

coming workload on that method. This sort of information can be acquired from test results,

estimations, or previous experience with provided components. As such, initial information

is to be considered as general guidelines rather than as absolute figures. This is because the

data from which the initial information was inferred was obtained in execution conditions that

were different from the current system conditions. As such, performance results will signifi-

cantly differ when a component is run under different workloads and on different application

servers, Java Virtual Machines (JVMs), Operating Systems (OSs) and hardware platforms.

Another possibility exists for obtaining initial performance information on a managed appli-

cation and its constituent components. This approach involves testing the application while it

82



is deployed and run in its targeted execution environment. However, the testing procedures

are performed while the application is kept offline, unavailable to external, business clients.

In other words, the application is deployed and run on the targeted software and hardware

platform on which it is to be made available when online. Testing workloads used are de-

signed so as to resemble the predicted workloads that the application is to experience when

online. This approach provides a testing execution environment that is very close to the tar-

geted execution conditions, which are to be encountered by the system when online. This fact

is also valid for component-level performance tests, since each component can be tested while

integrated in the targeted application. This has the potential to provide more accurate and reli-

able predictions on the components’ performance characteristics, than if each component was

tested in isolation. The offline testing approach was adopted as part of this thesis’ experimen-

tal work, in order to obtain performance information on the tested application components

(section 5.2).

Runtime learning procedures can also be used for automatically analysing monitoring data

and obtaining reliable component information. Part of the learning process, initial compo-

nent descriptions are repeatedly verified and updated during runtime, whenever new system

monitoring information becomes available. This way, component descriptions become pro-

gressively more accurate and reliable over time. This is because the monitoring information

obtained during runtime, in the actual targeted execution context, provides an accurate view

of a component’s performance characteristics. This is not always the case with performance

results obtained in testing conditions.

AQuA can use runtime monitoring data to automatically ’learn’ about the performance char-

acteristics of the software components and application it has to manage. This in turn can

progressively improve AQuA’s management behaviour over time. The reason is that the

adaptation logic used to automatically manage the system critically depends on the avail-

able knowledge that exists on the redundant components’ performance characteristics. This

includes information on the redundant components that are optimal in certain execution con-

texts, as well as on optimal combinations of redundant components, in different running en-

vironments. Component descriptions include formal representations of value set lists. Each

value set represents a component’s characteristics in a given execution environment. Namely,

a set comprises multiple values, one for each considered execution context and associated per-

formance metrics. For example, a set can comprise parameter values for the available CPU,

memory and bandwidth, associated with the observed response times and throughput val-

ues. These values indicate the component’s performance characteristics under the associated

execution environment. As such, in a component’s description there will be a different perfor-

mance record associated with each distinct execution environment encountered.

Component performance descriptions are obtained and verified by the learning process based

on collected monitoring data samples. As such, besides the component performance infor-

mation, raw monitoring data samples are also collected and stored as part of the component

descriptions. Specifically, runtime monitoring data samples are collected and stored in compo-

nent descriptions, forming histories of data, separately for each provided method. Thus, any

component description stores a separate history of monitored data samples for each exter-

nally visible component method. Each history in the component’s description stores a (sliding

window) sequence of chronologically-ordered data samples. The maximum history size, indi-

cating the maximum number of data samples that can be stored in a history, is a configurable

parameter. Each monitoring data sample contains the date when the sample was collected,
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external performance data, including response time and throughput, and data on the environ-

mental conditions in which the monitored component was running at the moment the sample

was collected. The environmental conditions related data includes incoming workloads and

available resource amounts, such as CPU, bandwidth, memory, or disk. Additional environ-

mental data can be obtained and stored as needed, or as relevant, including for example the

identities of the neighbouring active redundant components. An initial implementation of the

automated learning process was completed and tested, as presented in sections 4.5 and 5.3.

3.11.3 Anomaly Detection Policies

AQuA’s anomaly detection functionality is responsible for identifying and signalling the occur-

rence of performance problems, or of relevant variations in the application’s performance or

execution environment. Availability or reliability concerns can also be raised in case excep-

tions are being caught by the monitoring module (e.g. out-of-memory Exception). Perfor-

mance anomalies are generally signalled when performance metrics such as response times

and throughputs do not meet the system’s performance requirements. A number of ba-

sic anomaly detection strategies have been implemented. New strategies can be seamlessly

plugged into the framework as they become available [28]. When performance anomalies are

detected, it means that the system is already experiencing performance problems, which need

to be promptly eliminated. This situation can be avoided in some cases by identifying and

analysing the variations that occur in the execution environment and predicting how these

variations will potentially affect the system’s performance.

In case AQuA detects that a certain component might generate performance problems un-

der a new execution environment, it acts immediately to adapt the application. The potential

problem component is replaced with a more suitable one, if available, so as to prevent per-

formance difficulties before they occurred. Relevant variations in the execution environment

are detected by constantly monitoring the environmental metrics of interest and periodically

analysing the monitored data. Detected environmental variations are used as triggers to the

automatic application evaluation and adaptation process. Variations in the incoming work-

loads and resources availability are considered for this purpose. The principal idea behind this

strategy is that if at a certain point a system is meeting its functional and performance-related

requirements, then the system will generally continue to do so unless a change intervened to

alter this state. In one of the performed experimental testing scenarios (section 5.2), AQuA

detects changes in the incoming workload and uses them to trigger the application evaluation

and adaptation processes.

The occurrence of relevant variations in the execution environment is detected by constantly

monitoring the environmental metrics of interest and periodically analysing the monitored

data. Environmental variations that can be used as triggers to the application adaptation pro-

cess include changes in the incoming user load, work mix, or resource availability of the sys-

tem. For example, significant changes in the incoming user load can be detected and used to

trigger the application adaptation. Another possibly useful variation to consider is a change

in the application’s incoming work mix, from a read-only operations mix to a mix of both

read and write data accesses. Such variation can be useful to detect, as different redundant

implementation or configuration approaches can be adopted for each case. For example, for

Entity EJBs, the transaction commit option in the EJB’s container can be set to option A for
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read-only work mixes and to option C for read and write work mixes (appendix B.1), with a

dramatic effect on the resulting EJB response times. Time intervals during which certain work

mixes occurred can be identified by monitoring and analysing sequences of incoming method

requests. A trigger as simple as the arrival of a first ’write’ operation can be used to signal

the start of an interval with mixed ’read’ and ’write’ operations. Conversely, the lack of write

operations for certain duration can signal the start of an interval with read-only operations.

A further possibility exists for predicting performance anomalies based on execution context

variations. This opportunity occurs when the environmental variations themselves can be en-

visaged. In such cases, applications can be pre-emptively adapted to deal with the foreseen

changes before they actually happened. For example, certain applications may experience

workload variations with the time of day, week, month or year. For example, online banking

applications may expect reduced user loads during non-working hours. E-commerce applica-

tions would expect increased loads before certain events or during sales periods. When such

distinctive intervals can be predicted with sufficient accuracy, a human system manager can

instruct AQuA (via decision policies) to automatically activate a different redundant compo-

nent during each period.

AQuA’s anomaly detection functionality is specified based on decision policies. Anomaly de-

tection policies indicate the conditions in which performance alarms are being raised. The

analysed conditions generally consist of a certain set of monitored metrics and a correspond-

ing set of value ranges. Based on these specifications, a condition is met when monitored data

matches the metric values that define the condition. Different types of performance anomalies

can be defined, along with the corresponding detection conditions, or patterns. Thus, when

certain conditions are met, detection policies raise an alarm, indicating the occurrence of a

certain performance anomaly type.

Detection policies are evaluated periodically, as new monitoring data on the components’ per-

formance and on the running conditions becomes available. Detection policies analyse his-

tories of monitored metric values, in order to identify various anomaly types. A history of

sequential values is maintained for each monitored metric. In general, the detection policies

analyse new received metric values together with the stored history values. The analysed

value sequence is formed by adding newly monitored values to the stored history values.

Detection policies search the available sequence data for patterns that would indicate the oc-

currence of a performance problem. Possible opportunities for performance optimisations,

caused by significant variations in the running environment, can also be signalled.

Various anomaly detection patterns can be defined and configured by system managers for

each particular application [31]. For example, one pattern can be set to detect when current

performance values exceed certain preconfigured thresholds. Another pattern can add the

constraint that thresholds need to be exceeded for a certain period of time. Patterns for detect-

ing relevant running environment changes can also be set. Detection policies analyse newly

monitored data together with previously stored metric values. If the available value sequence

matches one of the predefined anomaly patterns, a performance anomaly alarm is raised and

the evaluation process is subsequently alerted.

In the current AQuA implementation, a single value is stored as part of each metric’s history

value sequence. In other words, for each metric, only the most recently monitored value is

being stored as history data. When a new metric value is received as input it is compared

against the history value stored for that metric. A threshold-based approach was adopted for

detecting performance anomalies based on the two available metric values. Specifically, an
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alert is considered in case the two metric values are on different sides of a certain configured

threshold. Additional detection policies are specified to avoid cascading or false alarms. For

example, decision policies should avoid raising repeated alarms in cases in which small os-

cillations occurred around the specified threshold value. An insensitivity interval is specified

for this purpose around the targeted threshold. Detection policies perform an extra verifica-

tion for determining whether newly monitored metric values actually exceed the predefined

threshold with more than the specified insensitivity interval. If this is the case, it is considered

that a performance anomaly may have occurred. Consequently, the component evaluation

process is executed to remedy the situation. The implementation details of this process are

more thoroughly described in subsection 4.6.1.

When identifying a performance problem, detection policies trigger the execution of the avail-

able evaluation and adaptation policies. These policies are used to process existing informa-

tion on current component descriptions and monitoring data and to take optimisation and

adaptation decisions. They can also be scheduled to run periodically, for optimisation pur-

poses, provided that sufficient resources were available.

3.11.4 Component Evaluation Policies

AQuA’s component evaluation functionality is responsible for determining the redundant com-

ponents that are optimal in a given execution environment. The component evaluation process

is based on the performance information that exists on the available redundant components,

at the time the process is being executed. Thus, the accuracy and reliability of the information

available to the evaluation process for predicting optimal redundant components becomes a

critical factor. Another important factor is the actual logic used to interpret the available infor-

mation and take evaluation decisions. Thus, the component evaluation functionality requires:

• accumulating information on components and their running environments, and

• processing the available information so as to determine the optimal redundant compo-

nent(s), in certain execution contexts.

Component performance information can be initially obtained at component deployment time

and/or dynamically inferred from runtime monitoring data (section 3.11.2). Initial component

information is typically acquired based on test results and/or previous experiences with the

considered components [30], [28] and [31]. Subsequently, as part of AQuA’s learning process,

the existing component information is dynamically validated and constantly updated, based

on accurate monitoring data, collected from the targeted managed system. Additionally, in

case initial component descriptions are not provided, the learning mechanism is used to ob-

tain this information from scratch.

Component evaluation results represent possible application optimisations in the targeted ex-

ecution context. Such optimisation solutions are given in the form of a set of redundant com-

ponents that are considered optimal in the targeted execution context. Evaluation results have

a confidence level associated with them, depending on the reliability of the information used

in the evaluation process. The more data is used to test and reconfirm a piece of information,

the higher the information’s reliability factor and thus the higher the confidence level associ-

ated with decisions taken based on this information.
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The component evaluation process uses existing component information to predict the com-

ponent’s behaviour in the future. As such, when a component is being evaluated, perfor-

mance data that was collected for that component in a certain execution environment is used

to predict the performance of the same component when running in similar environments. At

runtime, monitoring data samples are repeatedly collected for the active redundant compo-

nents and their execution environments. As such, a considerable number of data samples can

be available to describe a component’s previous behaviour under a certain execution context.

These data samples are used to predict the component’s behaviour when running in similar

execution contexts. For this purpose, a first solution is to select and analyse all data samples

relevant for the prediction process each time a component evaluation is required. Namely, all

the available data samples on a certain component in a targeted execution context are eval-

uated whenever the component’s performance needs to be predicted for a similar running

context. This solution can be optimised by periodically analysing the available data sam-

ples and inferring higher-level information on the components’ performance characteristics

in different contexts. This is done by merging monitoring data collected in similar execution

conditions into clusters of information. Information clusters can then be readily used when

evaluation decisions are needed. Part of this optimised solution, monitoring data collected in

certain running conditions is compared and merged with existing monitoring data recorded

in similar running conditions. The more monitoring data samples are available for inferring

the performance characteristics of a component in a certain running context, the higher the re-

liability of that performance information and the higher the confidence level when predicting

the performance of that component in a similar context. An information-inference learning

process was designed for AQuA to implement this automatic procedure (section 3.13). A fur-

ther optimisation can be achieved by also performing the evaluation process periodically, at

the RG level. This way, information on the optimal redundant component in each RG, in each

execution context, is also readily available. AQuA’s component evaluation function can then

directly use this information as needed.

These possible solutions differ in the timing when computational resources are being con-

sumed for the evaluation process. In the first solution, processing resources are being con-

sumed upon each evaluation request. In this case, all the available data samples are being

processed each time an evaluation decision is needed. In the second solution, processing re-

sources are being periodically utilised so as to pre-emptively obtain information clusters. In

this second case, when an evaluation decision is needed, the required information for each

redundant component is already available. The evaluation logic only compares the existing

information on the available components so as to identify the optimal redundant variant. In-

formation clusters are maintained up-to-date by periodically analysing new monitored data

samples and merging them with the existing information. In the third solution, information

on the optimal redundant component in each RG is periodically attained. Consequently, this

information is already available when a component evaluation decision is needed. The three

solutions are optimised with respect to the time required to take a component evaluation de-

cision. The trade-off lays in the pre-emptive consumption of resources, needed to periodically

process available data and infer clustered information. Namely, instead of processing col-

lected data whenever a decision is needed, these solutions analyse available data periodically,

maintaining an up-to-date result of the data analysis process.

The choice on which evaluation solution to use depends on a number of factors. One factor

is the utilisation pattern of the component evaluation process. Another factor is the rate and
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manner in which monitored data influenced to the clustered information. For example, rare

changes could occur in the information clusters if collected monitored data mostly reinforced

the conclusions already contained in these clusters. At the same time, component evalua-

tion decisions could be required at a much higher rate than the frequency at which clustered

information changes occurred. In such a case, the optimal evaluation solution would be to

periodically process monitored data and have clustered information readily available for each

of the frequent evaluation demands. The times at which monitoring data was processed can

be configured in this case at suitably rare intervals. On the contrary, in case monitoring data

frequently impacted on information clusters and evaluation decisions were rare, the optimal

solution is to process available monitoring data only when needed by an evaluation decision.

The component evaluation process is typically triggered by the anomaly detection policies,

upon detecting or predicting a performance problem. Nonetheless, the component evaluation

function can also be called periodically, for optimisation purposes, provided that sufficient

resources were available. Component evaluation results are sent to the adaptation decision

module for further processing. If a decision to optimise the application is taken, the cor-

responding adaptation operations are sent to the component activation module, so as to be

implemented into the running application.

3.11.5 Adaptation Decision Policies

AQuA’s adaptation decision functionality is responsible for finding optimal solutions to de-

tected or predicted performance problems. Solutions consist of application adaptations that

involve the dynamic swapping of one or multiple redundant components. Potential optimi-

sation solutions are initially identified by the component evaluation module. More precisely,

the evaluation process identifies the optimal redundant components in the targeted execution

context. The potential optimisation solutions are sent to the adaptation decision module for

further processing. The adaptation decision function analyses the received optimisation pro-

posals and determines whether to actually adapt the running system. For this purpose, the

adaptation decision logic takes into consideration the additional factors that may influence

the overall outcome of the proposed applications adaptation. This is because even if a redun-

dant component was evaluated as optimal in the current execution context, the final outcome

of the system adaptation operation needed to activate the component may not be optimal

overall. Other factors, such as the cost of the actual adaptation operation, or the risks taken

when dynamically updating the application are also considered at this level. Possible negative

effects are compared against the potential benefits that an implemented optimisation solution

could bring.

Adaptation decision policies are also responsible for selecting a final optimisation solution, in

case multiple possibilities are proposed by the evaluation process. This can happen in case

different redundant components are found to be optimal based on different evaluation crite-

ria. For example, different redundant components can be optimal with respect to different

quality metrics. Namely, one redundant component may yield higher throughputs, while an-

other component may be more reliable or secure. Also, different redundant components in a

RG may be optimal with respect to the various methods provided in the RG’s interface (sub-

section 3.3). In such cases, adaptation decision policies are used to choose the final optimal

redundant component to activate. The costs and risks associated with each optimisation so-
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lutions can be evaluated at this level. An overall score can be calculated for each potential

solution to support the final adaptation decision process. Adaptation policies should be spec-

ified so as to resolve any potential conflicts and be able to select a unique optimal redundant

component at any time.

The adaptation decision function is also used to prevent undesirable adaptation behaviour,

such as reactions to false alarms, infinite adaptation loops, or cascaded optimisations. For

example, decision policies can be specified at this level to prevent the application from be-

ing adapted too often, or optimised based on monitoring data collected while the system was

undergoing a previous adaptation.

3.12 Component Activation

AQuA’s component activation functionality is used to dynamically adapt managed applications,

as dictated by system optimisation decisions. Adaptation decisions are taken whether manu-

ally, by human system administrators, or automatically, by AQuA’s policy-based adaptation

logic (section 3.11). AQuA’s component activation operations involve swapping redundant

components, while the managed application is running [30], [28] and [33]. The optimisation

decisions sent to AQuA’s component activation function indicate the redundant components

to be activated and deactivated at each point.

As stated in related research on component hot-swapping (e.g., [3] or [77]), two main issues

occur when replacing component variants during runtime. One issue is concerned with the

state transfer between the swapped component variants. This operation involves porting the

state of the currently executing component instance to the replacement component instance.

Such state transfer operations are only needed when the same client request (or session) must

be handled by different component variants. This situation implies that a client request starts

being handled by a certain redundant component and subsequently finishes being handled

by a different redundant component. Thus, the handling process of a certain client request

sequentially involves multiple redundant components.

The state transferring operation between redundant component variants may particularly ben-

efit software applications in which client requests took significant amounts of time to execute.

In such cases for example, the time required for a sub-optimal component to handle a client

request may be greater than the time required to transfer the current component state to an

optimal redundant component and allow the new component to finish processing the request.

State transfer solutions such as proposed in the ongoing research in the area [77], [64] can be

considered to benefit such cases. However, the problem domain targeted by the thesis is typ-

ically characterised by rather short-lived client requests. That is to say, that in Internet-based

enterprise applications client requests usually take of an order of seconds (or in some cases

minutes) to execute. In such cases, transferring state between redundant components would

bring little performance benefits to requests already being handled when the component re-

placement occurred. For this reason, the approach adopted for AQuA’s component activation

function does not involve state transfer operations between redundant component instances.

Rather, running component instances finish executing all started client requests before being

removed by a component-swapping operation. Hence, a particular client interaction always

finishes execution with the component instances it started with.
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A second concern when dynamically swapping components is how to maintain the consis-

tency of existing client references. In other words, clients holding a reference to a redundant

component in a RG should not break when a component-swapping operation is performed on

that RG. On the contrary, the clients’ references should be transparently changed so as to point

to the currently active redundant component, at all times.

Two main approaches are possible for implementing AQuA’s component activation solution.

A first approach only allows one single redundant component in a RG to be available in the

system at any one time. In this case, when a new redundant component is activated in the

RG, it completely replaces the old redundant component. Nonetheless, as no state transfer is

performed, old redundant components must finish executing started requests before they can

be replaced. For this reason, component-swapping operations must be delayed in this case un-

til all started client interactions have been completed. This situation may consequently cause

certain delays in the component activation process. Such delays directly depend on the na-

ture and duration of the existing client sessions. As such, notable delays may be experienced

during a component activation process, even though the actual component-swapping opera-

tion does not induce significant overheads. The reason is that the new redundant component

to be activated cannot be made available before the old redundant component has finished

handing current client sessions. Thus, new incoming client requests are blocked waiting for

the component activation process to complete. The waiting time directly depends on the type

of client interactions with the system, at the time the component activation process is started.

Nonetheless, even if this approach may induce noticeable delays, it can be successfully used to

implement the component activation function, in the context of Internet-based enterprise sys-

tems. An important reason is that the proposed redundancy-based optimisation solution was

not devised with the aim of performing frequent component-swapping operations. Applica-

tions should only be adapted when major, possibly unpredicted changes occurred in their ex-

ecution environments. Thus, the management framework should only react to cases in which

the application could be significantly optimised, or when it risked failing to meet its quality

requirements. AQuA’s adaptation logic should always be specified considering these goals. It

should not be configured to constantly fine-tune applications to small variations in their exe-

cution contexts and obtaining marginal performance benefits. Considering these management

goals, it can be stated that induced component-swapping delays should only be experienced

on rare occasions, and by a limited number of client sessions.

Nonetheless, a second approach can be adopted, to remedy the described problem and op-

timise the component activation process. However, this optimisation comes at the expense

of a more complex component-swapping implementation. This second component activation

solution differs from the previous one in that it allows for instances of different redundant

components to coexist, as part of the same RG. In this case, incoming client requests are being

directed to instances of the currently active redundant component, upon arrival. A request-

indirection mechanism is used for this purpose, dispatching client requests to the appropriate

redundant component instances. When the active component is changed, new incoming re-

quests are directed to instances of the new active component. In parallel, instances of the

redundant component to be deactivated finish handling existing client sessions before being

removed. As a variation of the same approach, all redundant components in a RG can be

maintained and made available in the system, at all times. As before, incoming client requests

are directed to one of the available redundant components upon arrival.

In the current AQuA implementation, the component activation function is implemented
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based on the component hot-deployment facility of the application server. This solution aligns

with the first presented approach, where a single redundant component in a RG is allowed to

be available in the system, at anyone time. As discussed, this solution implementation can be

optimised, by allowing multiple redundant components in a RG to work in parallel for han-

dling different client requests. In certain scenarios, this optimised approach could significantly

reduce delays in the component activation process. The optimisation would particularly ben-

efit cases in which client sessions took significant periods to complete. A proxy-based solution

can be adopted to implement the optimised approach for AQuA’s component activation func-

tion. In this solution, all incoming client requests are being intercepted by a proxy, which

then dispatches the requests to the targeted component instance. Thus, clients do not in fact

hold direct references to the actual components they want to use, but rather to the intercepting

component proxies. In this case, when a redundant component is swapped, the local reference

that the proxy holds to the old component must be updated so as to point to the new redun-

dant variant. On the contrary, references that external clients hold to the component proxies

maintain their validity and thus require not to be changed. Component technologies based on

contextual composition frameworks [91] provide a straightforward way of implementing this

proxy-based approach. The reason is that in these technologies clients can only call component

instances through a component container, in which the targeted component was deployed and

run. The component container can consequently be modified, so as to transparently (re)direct

client requests to instances of active redundant components. In the context of the EJB com-

ponent technology, the EJB Object implementation, proprietary to each EJB application server

provider, can be modified and used to fulfil the role of component proxies for managed EJB

components (sections 2.4.2 and 4.3).

AQuA’s modular design allows the component activation implementation to be seamlessly

changed, independently from other management functionalities. Nonetheless, providing an

optimal implementation of the proposed AQuA framework was out of the thesis’ scope. The

thesis proposes a management framework that uses component redundancy to automatically

optimise component-based systems. Additionally, it aims to provide a proof-of-concept exam-

ple of how this framework can be implemented and used.

3.13 The Learning Mechanism

AQuA’s learning capabilities were devised for analysing collected monitoring data and im-

proving the framework’s management behaviour over time. The goal was to incrementally

automate system management-related tasks and progressively reduce required human inter-

ventions. The main learning process currently specified for AQuA is used to automatically

analyse raw monitoring data and infer higher-level performance information on the system’s

behaviour (subsection 3.13.1). Other learning procedures can be envisaged for augmenting

AQuA’s adaptation logic, based on acquired performance information and the outcomes of

previous system adaptations (subsections 3.13.2 and 3.13.3).

AQuA’s inference learning mechanism is used to build accurate performance descriptions for

the managed redundant components, in the current deployment context. Component de-

scriptions (subsection 3.11.2 are used to store information on the components’ performance

characteristics. Thus, a component description provides a specification of the component’s
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performance qualities, or its behaviour in various execution contexts. Based on this infor-

mation, the framework can successfully decide on how to adapt the application in different

running conditions. More precisely, the framework can analyse the description information

of the available redundant components and decide which component would be optimal un-

der the current running conditions. AQuA’s learning functionality enables the management

framework to:

• avoid requiring initial performance descriptions to be supplied at components’ deploy-

ment time

• avoid completely relying on monitoring results obtained when components were inte-

grated in a different system (e.g. a testing platform)

The goal of the learning mechanism is to automatically acquire performance information on

managed components, in the current managed system. This capability is designed to com-

plement, or replace certain tasks that component providers and testers commonly perform at

present. The paramount complexity of such tasks may cause the motivation of this approach

seem naive. However, the more realistic intent is to start by identifying and automating the

most straightforward data analysis and processing tasks and subsequently use the experience

to incrementally increase the complexity of automated procedures.

The adopted inference learning strategy was implemented and partially tested.

3.13.1 Inferring Performance Information from

Monitoring Data

A learning mechanism is proposed to infer performance information on the managed com-

ponents based on runtime monitoring data. The goal is to model and automate the process

that a human tester would normally perform in order to obtain performance information on

a certain system. Thus, the proposed learning process collects the raw data samples provided

by the monitoring facility and merges the data of similar samples into clusters of information

that have a certain emphreliability factor associated with them. These clusters of information

represent the cumulated result of extensive monitoring data and are used in the evaluation

process to reliably determine optimal system configurations.

Performance information is inferred at the component method level. The information associ-

ated with each method consists of a set of inferred data elements where each element belongs

to a different cluster. The set of clusters acquired for a component’s method characterise the

inferred performance behaviour of that component method, in different execution contexts.

A component method’s performance behaviour is represented as a collection of information

clusters. Each cluster is characterised by several elements as follows (Figure 3.7). First, a clus-

ter contains a cluster centre, which basically indicates the execution context associated with this

cluster. Then, each cluster has an admission interval, which delimits the acceptance of moni-

tored data samples to the cluster. The admittance interval can also be defined based on a no

similarity inteval, where the admission interval is twice the value of the no similarity interval.

The no similarity interval represents the maximum difference between the cluster’s centre and

the execution context of a new monitoring data sample for which the new sample is accepted
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into the cluster. A certain similarity function is used to compare different execution contexts,

in order to decide whether a new data sample should be added or not to a cluster. A sin-

gle function is used for all clusters to calculate the similarity between data samples and the

available clusters and to control data sample admission to clusters. A triangular function was

used for this purpose in the current implementation, but trapezoid, bell-curve or gauss shapes

can also be employed. Finally, each cluster has an information element associated with it, rep-

resenting the inferred information obtained from merging together all similar data samples

accepted into this cluster. The central information element in a cluster represents the inferred

performance information of that cluster. It is obtained by repeatedly merging monitoring

data samples that are accepted into the cluster based on their similarity with the cluster. The

information element provides information on a component method’s performance character-

istics in a specific execution environment. Thus, the set of available clusters for a component

method provides performance information on the method’s performance behaviour under

multiple targeted execution environments.
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Figure 3.7: clustering monitoring data to infer performance information

Monitoring data samples are being repeatedly collected from the running system, at fixed time

intervals. Each monitoring data sample contains the date when it was created and a certain

set of monitored parameter values. Monitored parameters include CPU, memory and net-

work bandwidth usage, as well as response time, throughput and incoming workload. Such

data is collected separately for each method a RG provides, and for each redundant compo-

nent available in that RG. This data is stored as part of a redundant component’s performance

history data. It is also analysed and used to infer higher-level performance information for

that component. Thus, data samples are stored in two different formats. First, monitored

samples are stored as raw monitoring data, as collected from the running system. Secondly,

they are stored into clusters of inferred performance information, obtained by analysing and

processing the raw monitoring data. Information inferred during runtime is used to verify the

validity of initial or current information. Thus, non-accurate information can be detected and

modified in effect. The adaptation logic for taking optimisation decisions favours the usage of

inferred information, if available, rather than the repeated analysis of unprocessed monitoring

data. The inference learning process is responsible for regularly performing this task instead.

This approach can reduce overheads and improve the efficiency of the system adaptation pro-
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cess. The methodology used to infer performance information from raw monitoring data is

described as follows.

Monitored data samples are grouped into clusters, based on an overall similarity factor (o SimF)

calculated between them. The idea is that it only makes sense to group and merge data sam-

ples that were obtained in similar execution environments. For this purpose, the o SimF be-

tween two data samples is used to represent the degree to which these two samples can be

compared and merged to infer reliable performance information. The o SimF takes values

between 0% and 100%, where 0% indicates no similarity at all and 100% indicates complete

similarity. The o SimF between two data samples is determined as follows. First, for each con-

sidered parameter, the values of that parameter in the two samples are being compared. A pa-

rameter similarity factor (p SimF) is calculated for each such parameter. Thus, there will be an in-

dividual memory usage p SimF, a workload p SimF and so on, for each monitored parameter.

The p SimF of a parameter is calculated using: p SimF (pi1, pi2) = (|pi1−pi2|∗100)/no sim int,

where pi1 and pi2 are the values of the parameter pi in the two compared samples s1 and s2

respectively; pi ∈ P, where P is the set of considered, or monitored parameters contained in

each sample and i = 1, n; n is the number of parameters considered; the no sim int is the

maximum difference between two values that have some degree of similarity; if the difference

between two values is greater than the no sim int, then the p SimF of the two values is 0%.

The current function selected to calculate the p SimF is a triangular one (Figures 3.7 and 3.8),

but other functions can be used instead, as appropriate (e.g. trapezoid, or bell curves).

As a next step, the o SimF of the two samples is calculated based on the individual

p SimF values set. The minimum function was selected for this purpose: o SimF (s1, s2) =

min(p SimF (pi)), where: s1 and s2 are the two compared data samples: s1 is a new data sam-

ple and s2 is the inferred performance information in an existing cluster. Using the minimum

function to calculate the overall sample similarity means that if one parameter in the data sam-

ples has a 0% p SimF, then the o SimF of the samples will also be 0%; in this case the two data

samples will not be merged as part of the same cluster. If necessary, other functions can be

used to calculate the o SimF from the individual p SimFs.

Each cluster contains one inferred performance element, which is obtained by merging all sim-

ilar data samples collected up to that point. This performance element has the same format as

a raw monitoring data sample. Nonetheless, the inferred information has a higher reliability

factor than a single monitored data sample would. The more data samples are used to infer a

performance element, the higher the reliability factor associated with that element.

A set of performance information clusters is built for each method of each redundant compo-

nent, as follows. Whenever a new monitored data sample is received for a certain RG method,

it is used to update the existing set of inferred clusters of that method, for the currently active

redundant component. First, the o SimF is calculated for the new data sample with respect

to all the existing clusters. Second, the new data sample is used to update the inferred infor-

mation in those clusters for which the calculated o SimF is greater than 0%. If the new data

sample cannot be used to update any of the existing clusters, because all calculated o SimFs

are 0%, then a new cluster is created for the new data sample. In addition, if all the o SimFs

that are greater than 0% are also smaller than a certain threshold (e.g. 50%), then the identified

similar clusters are updated as before and a new cluster is also created for the new data cluster.

This situation is exemplified in Figure 3.8. The manner in which new data samples are used

to update the existing information of similar clusters is described next.

New data samples are used to update the existing information of similar clusters. The value of
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Figure 3.8: the inference learning process:
updating current performance information with new monitoring data

each parameter in a new data sample is used to update the value of the corresponding param-

eter in the existing information element of the updated cluster. The following formula is used

for this purpose: updated parameter value = (old value+ w ∗ new value)/(1+ w), where w is

a weight factor, taking values between 0 and 1: w = o SimF/100. This formula dictates that a

new data sample influences the existing inferred data in a cluster in a manner that is directly

dependent on the o SimF between the new data and the cluster. As such, new data will hardly

influence existent data that was monitored in dissimilar environmental conditions. If the new

data sample has a small p SimF for even one parameter when compared with a cluster, then

this sample will only have a small influence in updating the values of that cluster, even if the

rest of its parameter values are extremely similar. However, new monitored data will have a

significant influence on existing data that was monitored in similar or identical environmental

conditions.

Figure 3.9 shows how the value of w influences the way new data sample values influence

existent inferred data values. For higher values (closer to 1), an old value converges to the

new value in only a few iterations. Each iteration corresponds to a new data sample becom-

ing available and being used to update inferred data. For lower weight values (closer to 0),

it takes a much higher number of iterations for an old value to slowly converge towards the

new value. This means that a new monitored data sample only has a small or insignificant

influence on the inferred data of a cluster if the similarity factor between the new data and

the existent cluster data was small. In other words, new monitored data will hardly influence

existent data that was monitored in dissimilar environmental conditions. However, new mon-

itored data will have a significant influence on existing data that was monitored in similar or

identical environmental conditions.
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Figure 3.9: convergence trends of inferred values with new values,
depending on the calculated weights (w)

Alternatively, the process of inferring performance information from monitoring data can be

triggered periodically, or only upon request, rather than with each new available data sample.

This would decrease the impact on performance the learning process would have if executed

more often, for each newly collected sample. Both options were integrated in the current

framework prototype and AQuA J2EE can be configured on which one to use at start-up.

3.13.2 Using Performance Information for

Component Evaluation Decisions

The component evaluation process uses the available performance information to determine

the optimal redundant components in specific execution contexts. Performance information is

available from the inference clusters associated with each component method. The component

evaluation process accesses and uses this information as follows.

When the evaluation process is triggered, a monitoring data sample is first collected from the

current execution environment. This sample is compared with all the existing clusters, of all

the available redundant components, and the o SimFs are calculated as previously discussed.

Clusters with o SimFs lower than a certain predefined threshold (e.g. 20%) are considered

irrelevant and are being discarded. If no relevant clusters are found, for any of the available

redundant components, it means that no performance information exists in the RG for the

current execution conditions. An adaptation is only triggered in this case if considered that

increased risks can be taken.

In cases in which more than one relevant cluster is found for the same redundant component,

reoccurrence probabilities are calculated for each cluster, based on their associated reliability

values and calculated o SimFs. Higher probabilities are associated with clusters that have

high reliability factors. For example, the evaluation process will predict that, for a certain re-

dundant component, performance characteristics similar to the ones recorded when ’spikes’

were monitored in a previous execution context will have a small probability of reoccurring in
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a similar context. On the contrary, there will be a high probability for the performance charac-

teristics monitored in ’normal’ conditions to reoccur.

In the simplest implementation case, a single cluster is selected to represent each redundant

component (in a certain environmental context). From these representative clusters, the ones

with information that indicates possible availability problems (e.g. thrown exceptions) are

being discarded. The performance parameter values of the remaining clusters are being com-

pared (i.e. response times, throughput and resource usage) and an ’optimum’ cluster is then

selected. The selection is based on comparing the parameter values in the considered clusters,

and then using whether an overall evaluation of all parameters, or taking into account spec-

ified priorities among parameters. The redundant component associated with the selected

’optimum’ cluster is considered to be the currently ’optimal’ component by the evaluation

process.

A different approach is possible for implementing the evaluation process, for determining

which redundant component is optimal under a certain execution context. This involves eval-

uating redundant components periodically, rather than only upon request. This means that

the optimal redundant component for each monitored execution context is determined pe-

riodically. Optimal redundant components can be re-evaluated with each newly collected

monitoring data sample. However, this might induce increased and possibly unnecessary

performance overheads. At the other extreme, the alternative presented in the previous para-

graphs was to only evaluate redundant components upon request. This is done by comparing

the performance information in the component descriptions available, for the current execu-

tion context. In both cases, the redundant component determined to be optimal for the current

execution context is selected as a potential candidate for activation. The identity of the opti-

mal redundant component determined is sent to the adaptation decision module for further

processing.

The main difference between the two approaches is in the timing for establishing the optimal

redundant component. In one case, the optimal component for the current context is deter-

mined upon request. Component descriptions are used in this case to compare the perfor-

mance characteristics of available redundant components. In this case, the current execution

context is matched against the execution contexts available in the component descriptions. If

inferred performance information is available for the current execution context for more than

one redundant component in the targeted RG, then the redundant component with optimal

performance characteristics is selected. In the second case, the comparison between the per-

formance characteristics of redundant components in a RG is performed periodically, for each

execution context that has been monitored. Thus, in this approach, optimal redundant com-

ponents are already determined at the time a request arrives for the RG’s evaluation. As such,

when an evaluation request arrives, the evaluation process merely needs to match the cur-

rent execution context against the stored execution contexts for which inferred data and the

associated optimal redundant component are available. As before, the redundant component

indicated as optimal for the matching execution context is returned by the evaluation process.

In case the evaluation process is executed periodically, method-level performance data in the

component descriptions is used to infer performance information at the RG level. Performance

information at the RG level is represented and stored as RG descriptions. RG descriptions are

organised in a similar manner with component descriptions. This means that there is one

set of clusters for each RG method. The way RG cluster sets are created in this case is de-

scribed as follows. Existing clusters from the available redundant components are compared
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and merged into a new set of RG-level clusters. One cluster set is formed for each method in

the RG interface. Each set of clusters for a RG method represents the performance behaviour

of that RG, in different execution contexts, when the optimal redundant component is used

in each context. A different redundant component can be assigned to each cluster in a RG

cluster set, as different redundant components can be optimal in different execution contexts.

Method-level clusters from different redundant components are only compared if the similar-

ity factor between them is higher than zero. The new set of RG-level clusters contains data

on the performance behaviour of the optimal redundant components available, in certain en-

vironmental conditions. Subsequently, when handling performance alerts, or optimising the

system performance, inferred data at the RG-level is used for determining the optimal redun-

dant components in the current environmental conditions.

In short, if the evaluation process is executed periodically, the optimal redundant components

for all execution contexts are repeatedly determined based on the collected monitoring data

and will be readily available when application optimisation solutions are needed to overcome

detected performance anomalies. In this case, when the evaluation process is required to re-

turn the optimal redundant component, the current execution context is matched against the

execution contexts for which inferred information is available. When a match is found, the

optimal redundant component associated with that context is returned.

3.13.3 Learning Procedures for Adaptation Logic

Special-purpose learning procedures can be devised for automatically augmenting AQuA’s

adaptation logic. Such learning procedures would be devised so as to analyse newly acquired

system information, such as inferred component performance descriptions, as well as the re-

sults of past adaptation decisions. The different types of decision policies, namely anomaly

detection, component evaluation and adaptation decision, can be updated and tuned in effect.

Learning procedures that can modify the adaptation logic would allow AQuA to not only

recognise and act on a given set of known scenarios, but also react to novel situations and to

solve performance problems not previously encountered.

Learning procedures can be employed to automatically infer and configure anomaly detection

policies. This can be achieved by correlating performance problem incidents, with the moni-

tored system states that preceded the problem occurrence. The incidence of similar conditions

can be subsequently used to predict the same performance anomalies in the future. Based on

such observations, anomaly detection policies can be created and configured so as to recog-

nise known problematic conditions by analysing monitoring data and to signal the predicted

problems to the component evaluation function.

Different learning procedures can also be devised to automatically configure and create com-

ponent evaluation rules. Such learning procedures would be based on the results of the infer-

ence learning process. The inference learning process synthesizes component performance

information from runtime monitoring data. Obtained performance information is further

analysed in order to detect potential cross points in the redundant components’ performance

curves. Cross points represent execution contexts in which the optimal redundant compo-

nent in a certain RG changes. In the presented testing scenarios (chapter 5), the learning pro-

cess for performance cross point detection was manually performed. The procedure involved

analysing available performance information and detecting cross points with respect to the
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various performance metrics considered (e.g. response times, or memory consumption). This

process can be automated as part of AQuA’s learning facility. An automated learning pro-

cedure can be implemented to analyse the available component information and detect per-

formance cross points. This is achieved by comparing the performance values yielded by the

considered redundant components. Clearly, only redundant components of the same RG are

compared. Also, it is only correct to compare performance values measured in identical or

similar execution contexts. The procedure for determining an optimal component based on

available performance information is described in the previous subsection. Results obtained

from this procedure can be formally stored as new decision policies. In this manner, when a

component evaluation is required, one of these inferred decision policies can directly indicate

the optimal redundant component in the targeted execution context. This would save the time

required to determine the optimal component upon each request. The inferred component

evaluation decision policy would contain the information on the optimal component at all

times. Inferred evaluation policies can be continually updated, as new performance informa-

tion becomes available. More precisely, the threshold values for swapping optimal redundant

components can change, so as to become more accurate over time.

In conclusion, automated learning processes can be used to infer new component evaluation

policies and configure existing policies. This process identifies situations in which one redun-

dant component is optimal with respect to a certain performance metric in certain execution

contexts, and another redundant component is optimal with respect to the same metric in

other execution contexts. An evaluation policy can be inferred for this situation to indicate the

respective optimal component in each execution context.

Learning procedures can also be implemented to automatically create and configure adapta-

tion decision policies. For example, the values of the risk factors taken when deciding to adapt

the system can be automatically tuned based on monitored results from previous adaptations.

Supposing an application is being adapted based on performance information that has a cer-

tain reliability factor associated with it. In case the monitored adaptation result significantly

differs from the predicted result the adaptation decisions can be accordingly updated to in-

crease the reliability requirements for valid information. This would mean that the adaptation

policies will take fewer risks in the future, when deciding to optimise the application.
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CHAPTER

FOUR

Framework Implementation -

Prototype for J2EE

Chapter Summary

This chapter presents AQuA J2EE, a prototype implementation for the AQuA framework.

AQuA J2EE was implemented as part of the thesis research work, to show how an instan-

tiation of the AQuA framework can automatically manage a component-based application.

J2EE was selected as the component technology and the JBoss application server as the J2EE

implementation used.

The chapter explains how the main framework functionalities were implemented, including

the runtime monitoring, adaptation logic and component activation modules. An intrusive,

server-level instrumentation approach was taken for implementing AQuA’s monitoring

function. Decision policies were specified using the ABLE Rule Language for implementing

AQuA’s adaptation logic. The decision policies currently specified for AQuA J2EE were

designed and configured for managing the particular J2EE example application tested.

Policies were specified for the anomaly detection, component evaluation and adaptation

decision parts of the AQuA framework. The component activation function was implemented

based on the hot-deployment facility of the underlying application server. An introduction to

the JBoss application server characteristics relevant to AQuA J2EE precedes the framework

implementation description.

Goals of this chapter:

• AQuA J2EE: a prototype implementation for the AQuA management framework, tar-

geted at the J2EE component technology and the JBoss application server
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4.1 JBoss J2EE Application Server

4.1.1 JBoss Overview

JBoss1 is an open source application server for J2EE, exclusively implemented in the Java pro-

gramming language. The JBoss project was started in 1999 as an open-source EJB container.

As the project progressed and new versions of the JBoss server were implemented, new func-

tionalities and services were incrementally provided. In addition, novel technologies such as

J2EE, JMX2, SOA3, JAAS4, or AOP5 were adopted and supported by the JBoss server.

JBoss has been quite largely adopted due to some of its particular characteristics. These in-

clude the fact that it is free, open source and simple to use when compared to other J2EE

servers. In addition, as a result of its modular structure, JBoss is also easily modifiable and

configurable. The increased popularity of the JBoss server is reflected in over 5 million down-

loads, making it the most downloaded J2EE application server. The latest JBoss release is

version 4.0, which uses AOP to add support for different types of java components, in addi-

tion to J2EE.

The following subsections present the JBoss server, starting with the general architecture and

then focusing on the EJB support provided via EJB containers. The main characteristics of the

JBoss architecture, such as modularity and loose-coupling are also discussed, showing how

they enable the seamless customisation of the server. The way JBoss can be modified and

configured to optimise application performance in various scenarios is also discussed.

4.1.2 JBoss Architecture

JBoss provides a full J2EE implementation. It includes the JBoss Server and the EJB Container,

and it is based on a JMX infrastructure. It also contains JBossMQ - for JMS messaging, JBossTX

- for Java Transaction API and the Java Transaction Service (JTA/JTS) transactions, JBossCMP

- for CMP persistence, JBossSX - for JAAS-based security and JBossCX - for Java Connection

Architecture (JCA) connectivity. JBoss features a modular architecture, in which the provided

services - transactions, persistence, security, or connectivity - are implemented as separate

modules, which are integrated through a JMX core. This architecture allows any JBoss module

to be replaced by a custom implementation module as long as the customised module is JMX-

compliant and features the same Application Programming Interfaces (APIs) as the original

one. The JMX technology enables seamless integration and interaction of JBoss modules. As

such, the JBoss standard elements can be extended or replaced with customised versions in

order to accommodate the needs of various infrastructures.

1JBoss open-source J2EE application server: www.jboss.org
2Java Management Extensions (JMX) technology, from Sun Microsystems:

java.sun.com/products/JavaManagement
3Service Oriented Architectures (SOA): www.service-architecture.com
4Java Authentication and Authorization Service (JAAS), Security:

java.sun.com/products/jaas
5Aspect Oriented Programming (AOP): www2.parc.com/csl/projects/aop
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4.1.3 EJBs on JBoss - the EJB Container

EJB Containers

An EJB container is a software entity that manages a certain type of EJB. When an EJB module

or application, such as an EJB.jar archive is deployed, JBoss creates a number of containers and

connects them internally to be able to handle references between the deployed beans. Detailed

EJB information is needed for deploying a certain EJB into a container. An .xml deployment

descriptor file, named ejb-jar.xml, is used to provide this bean information (metadata). JBoss

creates one separate container instance for each separate EJB deployed. Most settings of EJB

containers can also be configured via deployment descriptor files (e.g. subsection 5.2.3 and

appendix B). The EJB container architecture and the various configuration options in JBoss

are described below.

EJB Container Configuration

JBoss externalises most of its EJB container settings using container configuration files in

XML format. These are the standardjboss.xml file and the jboss.xml file. The standardjboss.xml

is the default configuration file and it applies to all instantiated containers. The jboss.xml

configuration file is specific to each deployed EJB application and comes bundled with the

application archive files. Container configuration files have to conform to a certain JBoss

specific format, which indicates the container elements that can be configured, their names,

valid attributes and default values. The main configurable container elements in JBoss

include the composition of the container interceptor chain, instance pool and instance cache

settings, persistence managers, commit options and security configurations. This allows

JBoss containers to be customised for optimal behaviour and performance of particular

deployed applications. In addition, special-purpose interceptors with functionalities that are

not provided with the standard JBoss distribution can be implemented and integrated as

part of customised JBoss containers. EJB deployment descriptors in JBoss allow a particular

container configuration to be used for each deployed EJB component. In case a customised

container configuration is not specified for a certain EJB, a standard container configuration

is selected for that EJB by default. Default container configurations are specified in the

standardjboss.xml file. The default configuration selected for a certain EJB depends on the

EJB’s type: Stateless Session, Statefull Session, BMP or CMP Entity, or Message-Driven bean.

Appendix B illustrates a more detailed example of a jboss.xml file. The example shows how

JBoss containers were customised for part of the performed experimental work.

EJB Container Instantiation

When an EJB application is deployed on the JBoss server, an EJB container is instantiated for

each EJB component in the deployed application. When a container instance is created, all its

specific configuration attributes are read from the corresponding container configuration files:

the generic standardjboss.xml file and the application-specific jboss.xml file. Interceptors are

added accordingly to the instantiated container.

In JBoss, EJB applications can be deployed manually or by using the automatic deployment

facility that JBoss provides. Automatic deployment allows applications to be deployed by

simply copying the application directories or archives in a certain directory location. The

JBoss server automatically detects the application files, whether at server start-up or during

102



runtime and performs the necessary deployment tasks. This facility allows applications

to be hot-deployed, which means applications can be deployed while the JBoss server is running.

EJB Container Plug-in Framework

JBoss EJB containers are designed as frameworks into which various functional parts can be

plugged-in. Consequently, to a large extent, the behaviour of a JBoss container is implemented

and provided by container plug-ins. The main functionality of the container itself is to manage

its plug-ins, connecting them and providing them with the information they need to perform

their implemented functions.

JBoss provides several predefined container types, each one designed for managing a different

type of EJB component. Separate EJB containers are provided for managing CMP and BMP

Entity beans, Stateless Session beans, Statefull Session beans, or Message-Driven beans. For

example, Stateless Session containers are specially designed for managing Stateless Session

beans. Consequently, they do not use instance caches, as Stateless Session beans do not

maintain state between client calls. An additional example is Entity containers for managing

Entity beans that use a persistence manager for making the Entity bean’s state persistent

based on a certain storage mechanisms, such as a relational database.

JBoss uses various container plug-in types, including invokers, interceptors, instance pools

and cashes, or bean persistence managers. Each plug-in can be included, customised or

excluded from a container configuration, by using the corresponding container configuration

file(s). Invoker plugins are used for supporting distributed client-server communication over

various transport and network protocols. Interceptors, instance pools, caches and persistence

managers are briefly discussed below.

Interceptors

Interceptor plugins are used to capture incoming method calls and perform certain tasks

before forwarding them to the actual EJB instances. Such tasks may include logging, security

checks, or transaction processing. Interceptors are linked in a chain-like structure, such that

all incoming and outgoing method invocations must pass through this container interceptor

chain. Namely, incoming method calls are forwarded from the first interceptor down the

container plugin chain until they are being dispatched to the targeted EJB instance. The

last interceptor in the chain forwards method requests to targeted EJB instances. The order

of interceptors in the linked chain is important. For example, security interceptors should

always be placed before EJB instance-acquisition interceptors.

JBoss’ plugin chain design clearly separates the functionalities of the different interceptors.

This increases container flexibility by allowing various interceptors to be added, modified or

removed, as well as rearranged in the interceptor chain.

Instance pools

Instance pools are used to manage EJB instances that are not associated with any identity.

Containers can be configured to use an instance pool for recycling EJB instances, or configured

to only instantiate and initialise EJB instances on demand. Instance pool policies and capacity

can be configured in the container configuration files. Instance caches use instance pools to

obtain free EJB instances for activation. Certain interceptors use the instance pools to obtain

stateless EJB instances and return them in response to ’create’ requests on EJB home interfaces.
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Instance caches

Instance caches are used to manage ’active’ EJB instances, which are EJB instances that have

identities associated with them. Only Entity and Statefull Session beans are cached, as these

are the only EJB types that maintain state between client calls. Instance caches maintain a list

of active instances and perform instance activation and passivation operations.

Persistence managers

Persistence managers are used to activate and passivate statefull EJB instances and to manage

their states. When a statefull EJB instance is activated, its state is retrieved from the persistent

storage used and is associated with a free EJB instance. During EJB passivation, EJBs’ states

are persisted and the EJB instances are freed and returned to the instance pools. Relational

databases or files can be used as persistent storage mechanisms. Different persistence manager

types are used depending on the managed EJB type (i.e. whether the managed EJB type is a

Statefull Session or Entity bean).

4.2 Framework Implementation Overview

A fully-automated AQuA prototype was implemented in order to test and show the frame-

work’s management capabilities and potential. The prototype is referred to as AQuA J2EE,

and it was implemented and tested for managing the performance of J2EE systems at the EJB

component level [33].

The JBoss application server6 was selected as the J2EE application server to integrate with

AQuA J2EE. However, the way AQuA J2EE was designed allows it to be seamlessly modified

to work on any J2EE-compliant application server. This aspect is described in more detail

later in this section.

In the context of the EJB technology, AQuA J2EE uses JNDI names to identify each EJB

component it has to manage. This allows each EJB component to be uniquely identified,

even when the EJB’s internal implementation changes. Using the component redundancy

terminology introduced in section 3.4, each Redundancy Group (RG) represents one EJB com-

ponent. Each RG is uniquely identified based on the EJB component’s JNDI name. The EJB’s

public interface is the RG’s provided interface. In this context, activating different redundant

components in a RG is equivalent to changing the implementation of the corresponding EJB

component (i.e. the EJB class binary file). In case multiple EJB classes are used together to

provide the functionality of a single RG, the public interface of the entry-level EJB represents

the RG’s provided interface. Multiple EJB implementations, providing an identical EJB

public interface, can be available as part of a certain RG. These multiple EJB implementations

constitute the redundant component variants of that RG.

Regarding AQuA J2EE’s portability, certain AQuA functionalities, such as the performance

anomaly detection, component evaluation and adaptation decision, can be implemented

independently of the targeted J2EE platform, or component technology used. Conversely,

other framework functionalities, such as the monitoring and the component activation, need

6JBoss J2EE application server: www.jboss.org

104



to interact with the managed component-based system, in order to obtain monitoring data

and perform component-swapping operations, respectively. These are system-dependent

functionalities that need to be customised for each targeted platform. Figure 4.1 provides a

high-level view of AQuA’s logical architecture and indicates AQuA’s platform-dependent

and platform-independent functionalities. Several approaches exist for implementing

AQuA’s system-dependent functionalities, namely the monitoring and component-swapping

related functions [28] (section 2.6.5). For the current AQuA J2EE prototype, the adopted

implementation approach is based on modifying the application server on which managed

applications are deployed and run. JBoss was selected as the J2EE application server for

prototype implementation. Server-independent solutions can also be implemented for AQuA,

based on application-level instrumentation proxies, as discussed in section 2.6.5. In such

cases for example, the COMPAS monitoring tool7 can be used to extract runtime performance

data, and a proxy-based component swapping solution can be implemented for adapting the

application (appendix A.1).

  AQuA  
Performance Management Framework 

Component 
Activation   

Underlying Platform 

Enterprise Application Server (JBoss) 

 

 
 
 
 
 
 
 

            Component application 

 
 

client calls 

Monitoring 
and Diagnosis 

 

 Platform dependent 
 

 Platform independent 

 

instrumentation 
logic 

Evaluation  
and Decision 

 

Figure 4.1: AQuA’s platform-dependent and platform-independent parts

Regarding the framework’s control management architecture, a decentralised approach (sec-

tion 2.6.4) was adopted for the initial implementation of AQuA J2EE (Figure 2.5). This im-

plies that adaptation logic and management operations are performed locally at the individ-

ual component level, independently from other components. As discussed in section 2.6.4, it

is crucially important to additionally provide global management operations, at the overall

system level. Two main approaches can be adopted for achieving this goal. First, global sys-

tem optimisations can be achieved by enabling the decentralised, local framework instances

to communicate with each other and influence their actions (Figure 4.2). In this case, the in-

dividual framework instances and their inter-communication protocol are designed in such a

way that the emerging, global management behaviour directs the managed system towards

7COMPAS monitoring and analysis tool for J2EE systems: http://compas.sourceforge.net
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meeting its overall quality goals. As an alternative solution, a centralised framework instance

can be used to supervise all local decentralised framework instances, so as to form a hierarchi-

cal control topology (Figure 2.6). Both approaches allow local optimisations to be performed

when possible, while supporting global optimisations when necessary. Nonetheless, higher-

level control functions were not required for the performed experimental work (chapter 5) and

were not implemented for the current version of AQuA J2EE.
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Figure 4.2: connected decentralised control topology

The current implementation of AQuA J2EE automatically detects changes in the managed ap-

plication’s execution environment, such as the incoming workloads, decides on how to adapt

the application, and performs the corresponding EJB component-swapping operations while

the application is running [33]. In addition, monitoring data is analysed by the framework’s

learning mechanism, which infers higher-level performance information on the managed re-

dundant components.

Obtained test results showed that system performance and availability were visibly improved

when AQuA J2EE was used to adapt applications, compared to the case when no adaptation

was used. Experimental results from testing AQuA J2EE in various scenarios are presented

in chapter 5. This chapter describes the way the general framework capabilities were im-

plemented in the AQuA J2EE prototype. The rationale behind the choices made during the

design and implementation of AQuA J2EE are also explained.

4.3 Portability Considerations for AQuA J2EE

The current AQuA J2EE prototype was implemented to work on a modified version of the

JBoss J2EE application server. The AQuA features that need to be implemented in a platform-

dependent manner are part of the monitoring and component activation modules. Both of

these functions need to be able to intercept communication messages between the clients and
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the managed component instances. The monitoring module needs this capability for extract-

ing runtime data, whereas the component activation must be able to delay and indirect client

requests as part of its component-swapping operations. In the modified JBoss version, these

requirements were met by instrumenting JBoss’s container interceptors and using a modi-

fied version of JBoss’s hot-deployment facility. A different implementation solution would be

needed for porting AQuA J2EE to other application servers. The reason is that J2EE servers

from different providers feature dissimilar designs and implementation characteristics. There-

fore, separate customised solutions need to be accordingly implemented for each targeted

application server to support AQuA’s platform-dependent functions. Nonetheless, the gen-

eral design principle used for implementing AQuA J2EE on JBoss remains unchanged for all

J2EE-compliant servers. More precisely, the solution designed for AQuA J2EE is based on

using the EJB Home and EJB Object entities that any J2EE-compliant server must implement

(subsection 2.4.2). These entities are used for intercepting, monitoring and controlling client

access to managed EJB instances. As explained in section 2.4.2, EJB clients can never access

EJB instances directly. Conforming to the J2EE specification, all client accesses to instances

of an EJB class must be intermediated by the EJB Home and EJB Object associated with that

EJB class. The actual implementation of the EJB Home and Object entities largely depends

on the specific solution adopted by each J2EE server provider. For example, in JBoss, the EJB

Home and Object elements are implemented as part of the EJB container itself. Part of this

solution, each deployed EJB has its own EJB container instance associated with it. Instrument-

ing EJB containers in this case consequently provides EJB-level instrumentation for the JBoss

server. However, this solution would not apply to other J2EE server implementations, such

as JOnAS, WebSphere or WebLogic. In JOnAS8 for example, all EJB classes deployed as part

of an application archive are managed by a single EJB container instance. Therefore, EJB-level

instrumentation cannot be obtained in this case by instrumenting EJB containers. Nonethe-

less, any J2EE-compliant server must provide an implementation of the EJB Home and Object

elements. Conforming to the J2EE specification one EJB Home and Object instances must be

available for instances of each deployed EJB class. Therefore, a general solution based on

modifying these compulsory elements is always applicable and portable to any J2EE server.

Figure 4.3 shows how component redundancy is implemented in the EJB technology. The fig-

ure shows how redundancy implemented at the EJB class level or the EJB container level is

masked from external clients via the EJB Home and EJB Object entities.

The AQuA framework can also be implemented to manage J2EE applications at different com-

ponent granularities, or to manage applications based on component technologies other than

J2EE. Namely, AQuA can be adapted to manage other J2EE components, such as middleware

services, or coarser-grained components such as entire web servers or application servers. Ex-

isting component technologies generally provide a level of indirection between clients and

the component instances they access. For example, in FRACTAL9, this level of indirection is

provided by a management membrane that surrounds a component’s business-logic imple-

mentation. As such, FRACTAL components consist of an outside membrane and of one or

more internal component implementations. Membranes are used for intercepting, monitoring

and controlling access to the managed component content inside each membrane. As such,

membranes provide a good opportunity for implementing additional management functions

8JOnAS J2EE application server: jonas.objectweb.org
9Fractal Project: fractal.objectweb.org

107



needed for AQuA’s platform-dependent parts.
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Figure 4.3: EJB remote access with component redundancy

4.4 System Monitoring

The role of AQuA’s monitoring functionality is to extract runtime data from the managed ap-

plication and its execution environment. AQuA analyses collected monitoring data in order

to take adaptation decisions and update component description information (sections 3.11.2

and 3.13).

In AQuA J2EE, the monitoring functionality was implemented by instrumenting the JBoss

application server, on which managed applications were deployed and run. The approach is

based on a J2EE specification constraint, which stipulates that all client requests to instances of

an EJB must go through the application server container that manages that EJB (section 2.4.2).

Thus, containers can be modified to intercept such requests and extract specific information of

interest. Based on these considerations, one of JBoss’ container interceptors (section 4.1.3), the

LogInterceptor, was instrumented to extract monitoring data from all incoming and outgoing

EJB method calls. Using this approach, monitoring data is collected at the EJB method level.

Primitive monitoring data includes method request and response time stamps, the identity of

the caller and called EJBs and the name of the initiating and targeted methods. This data is

used to calculate EJB method response times, workloads and throughputs, at the EJB server

side. It can also be used to determine method call paths through the J2EE application, as dis-

cussed in subsequent paragraphs.

A call-path consists of a sequenced set of EJB identities and methods, called as part of a certain

business transaction. For example, a business transaction in an online banking system could

consist of operations for listing all banking transactions on a client’s account over a certain pe-

riod. The call-path for this example business transaction can consist of a succession of requests

for the client log in, client accounts listing, banking transactions listing (for a selected account
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and period) and client log out methods.

Additional data is collected at the EJB client side, in order to provide better support for de-

termining accurate application call-paths. Namely, JBoss Client Containers were also instru-

mented, in order to extract monitoring data on outgoing client requests (Figure 4.4). When-

ever a method call is made, the identities of the initiating and targeted methods and of the

initiating and targeted EJBs are extracted from the intercepted call at the client side. This in-

formation should be identical to the one obtained at the server side from the instrumented EJB

containers. Comparing and matching client-side and server-side call-path data guarantees the

correctness of created application call-paths. In addition, duplicated information would be

necessary for cases when the client and server components were running in separate JVMs.

Method request and method response time stamps are also collected at the client container

level, allowing performance metrics such as response times to also be calculated at the client

side. Obtained call-path information can be used to dynamically create accurate models of the

running managed application [28]. This approach contributes to achieving AQuA’s goal of

placing no extra requirements on application assemblers to provide such application models

at deployment time.

The presented monitoring approach is able to extract the necessary data for constructing ac-

curate system call-paths or application models. Nonetheless, more work is needed in order

to analyse and correlate extracted monitoring samples and to obtain meaningful call-path or

model information. However, creating accurate application models based on runtime moni-

toring data is a complex problem, which is out of the scope of the presented dissertation.
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Figure 4.4: instrumenting the JBoss application server

The adopted instrumentation approach has certain advantages over a non-intrusive, proxy-

based approach since data can be obtained from the application server more accurately than

from application-level proxies. As an example, an important advantage of the server-level

instrumentation approach over the proxy-based interaction recorder presented in [28] is the

capability of deterministically identifying the initiator of a certain method call. Using the

server-level instrumentation, this information can accurately be obtained even in the presence
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of multiple, simultaneous calls for the considered method [28]. In addition, in the presented

approach information is obtained dynamically while calls are being made, rather than during

special testing scenarios. Dynamically obtained data can be used to detect runtime changes in

the application components’ interaction. Such dynamic changes can commonly occur in EJB

applications, as EJBs are allowed to bind to each other at runtime. The main disadvantage of

the adopted server-level instrumentation approach is that it is intrusive, since the server con-

tainer needs to be separately modified for each particular server used. Therefore, a separate

instrumentation implementation is needed for each particular application server considered.

Modified interceptors can also be used to capture and signal exceptions thrown during sys-

tem execution. This data is needed for detecting and avoiding certain types of functional

application problems. For example, redundant components that were detected to raise run-

time exceptions in the past should not be activated in similar execution contexts in the future.

Dynamically monitored data samples are sent to the anomaly detection and learning mod-

ules for further processing. Additional monitoring data types can be collected as needed,

from other application components or from the underlying execution platform. Servlet mon-

itoring data was collected via JBoss’ JMX infrastructure, in order to calculate incoming client

workloads at the web server side. The code used for monitoring a JBoss servlets via JMX is

exemplified in appendix A.2. Additionally, data on hardware resource availability, such as

CPU, memory, disk, or bandwidth, can also be obtained, by employing platform-dependent

techniques or tools.

Regarding the management framework’s footprint and runtime overheads, a main perfor-

mance concern is that constantly monitoring all EJB methods of a large-scale application

would induce excessive and unnecessary performance overheads. In order to avoid this sit-

uation, AQuA J2EE can be configured to only monitor and control a certain, clearly specified

subset of application components, or EJBs. A specific list of methods that are to be monitored

from each of these managed EJBs can also be configured. In AQuA J2EE, the set of EJB com-

ponents and methods to be monitored is statically specified. In a more complex scenario, such

management configurations can be dynamically modified to suit runtime changes in the appli-

cation performance characteristics. For such cases, the approach presented in [28] can be used

to determine runtime management requirements and dynamically adjust the set of monitored

elements, based on the current system state. More precisely, the management system can be

configured to only monitor entry-level components during periods when the system’s QoS

requirements are being met. This configuration induces minimum performance overheads.

Problems detected at the entry-level components are considered to represent global system

problems, since they may reflect performance anomalies caused by one or multiple internal

components. When such problems are detected at the entry-level components, the monitoring

scope can be extended. This allows the management framework to also extract data from in-

ternal EJBs and be able to identify the internal components causing the performance anomaly.

Once the detected problems are solved, for example by swapping the problem components

with redundant variants, the monitoring scope can be restrained again to the top- or entry-

level components only. This dynamic approach maintains monitoring overheads at a mini-

mum during normal system functioning, while also allowing for extensive monitoring to be

used when needed to detect problem components.

The instrumented JBoss server can be integrated with other management tools for further

monitoring and data processing. The way JBoss was modified to work with the COMPAS

tool is explained in appendixA.1. In this scenario, monitoring data extracted from the run-
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ning JBoss server is dynamically sent to the COMPAS client module. COMPAS subsequently

processes the received data, constantly calculating and displaying performance metric graphs

and the EJB instances status. In addition, COMPAS can also use anomaly detection logic to

recognise problems and raise performance alerts during runtime.

4.5 The Learning Mechanism

AQuA’s learning mechanism was devised for analysing monitoring data and inferring high-

level performance information on the available redundant components. The methodology

used to infer performance information from raw monitoring data was described in section

3.13. A proof-of-concept implementation of this mechanism was provided for AQuA J2EE.

The implementation uses system files for storing monitoring data and inferred performance

information. Two separate files are used for each monitored method of each component. One

file is used to store raw monitoring data, as collected from the running system. This data rep-

resents the performance history of the associated component method. The second file is used

to store the component method’s performance information, as inferred by analysing the raw

monitoring data.

Two alternative solutions were actually implemented, in order to allow the learning pro-

cess to be executed whether constantly during runtime, or only upon request. As such,

the two implementations differ in the manner in which the learning inference process is

triggered. In the first approach, the inference process is repeatedly triggered during run-

time, as new monitoring data becomes available. In this case, performance information

is constantly inferred at runtime. The existing inferred information is repeatedly updated,

based on the latest monitoring data available. As such, inferred performance informa-

tion is updated whenever new values are calculated for the considered monitoring met-

rics. Such monitoring metrics include for example response times, throughput and work-

loads. When this first solution is used, the learning module is notified each time new mea-

surements become available. The inference process is subsequently triggered, to use the re-

cent measurements and to update the existing inferred information. The code implement-

ing this process is shown in Listing 4.1. The monitoring class that obtains new raw data

from the running system is the MonitoringDataHandler class. Namely, the ’calculate’

method of the MonitoringDataHandler is used to compute average response times,

throughputs and workloads over recent intervals. New calculated values are subsequently

used to update the component description of the currently active redundant component.

The newly available data samples are added to the active component’s history, as well as

used to update its existing performance information. This process is shown in the code

line: this.rgManager.addMonitoredDataSample(dataSampleJB);. This com-

mand sends a newly calculated data sample to the associated RGManager instance. As dis-

cussed, the RGManager instance subsequently uses the data sample to update the component

description of the active redundant component. The manner in which existing inferred infor-

mation is updated based on newly available data samples is described in subsection 3.13.1.

In the second approach, performance information is only inferred upon request. In this case,

at runtime, monitoring data is merely stored as component description histories, in a specially

allocated system file. When the inference process is triggered, all the available data in the his-
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tory file is sequentially processed. Performance information is progressively inferred, as each

data sample is read from the history file. AQuA J2EE can be configured to use either of the

two available learning approaches.

Listing 4.1: Inferring performance information from

calculated performance metrics

1 MonitoringDataHandler . c a l c u l a t e ( ) {

2

3 // . . .

4

5 ////code f o r i n f e r r i n g performance information from c a l c u l a t e d performance m et r ics

6 // v e r i f y whether t h i s manager i s updating performance d e s c r i p t i o n s at runtime

7 i f ( t h i s . rgManager . i sU pd at in gA ct iv eVar ian tDescr ip t ion ( ) ) {

8 //add method data sample to the method ’ s d e s c r i p t i o n

9 //get the redundant components in t h i s RG

10 t h i s . rgVar ian t s = t h i s . rgManager . getRGVariants ( ) ;

11 i f ( n ul l != rgVar ian t s ) {

12 //get the c u r r e n t l y a c t i v e redundant component

13 // t h i s i s the redundant component whose d e s c r i p t i o n

14 // w i l l be updated

15 S t r i n g currentAct iveVariantKey = t h i s . rgManager . getAct iveVariantKey ( ) ;

16 //get the VariantDescript ionManager f o r the c u r r e n t l y a c t i v e redundant

component

17 VariantDescript ionManager variantDescript ionManager =

18 ( VariantDescript ionManager ) t h i s . rgVar ian t s . get (

currentAct iveVariantKey ) ;

19 i f ( n ul l != variantDescript ionManager ) {

20 //get the curren t date

21 Date currentDate = new Date ( ) ;

22 // i n s t a n t a t e new VariantMonitoredDataSampleJB − used to update

the v a r i a n t d e s c r i p t i o n

23 VariantMonitoredDataSampleJB dataSampleJB = new

VariantMonitoredDataSampleJB ( ) ;

24 // s e t curren t date

25 dataSampleJB . setSampleDate ( currentDate ) ;

26 // s e t the MethodMonitorDataJB

27 dataSampleJB . setMethodData( t h i s . methodMonitorDataJB ) ;

28 // s e t the EnvironmentData

29 // c u r r e n t l y using the d e f a u l t in s t an ce , a l l values s e t on zero

30 dataSampleJB . setEnvironmentData ( t h i s . envMonitorDataJB ) ;

31 //add the method monitored data sample to the v a r i a n t ’ s

d escr ip t on

32 // data sample i s added to the v a r i a n t ’ s data samples h i s t o r y

l i s t

33 // data sample w i l l be used to update the v a r i a n t ’ s i n f e r r e d

performance d e s c r i p t i o n

34 t h i s . rgManager . addMonitoredDataSample ( dataSampleJB ) ;

35 }

36 e l s e {

37 //warning message , new monitored data not considered / / . . .

38 re t urn ;

39 }

40 }

41 }
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As part of the learning process, data samples collected from the running system are used

to infer higher-level performance information on the managed components. Data samples

provide values for the considered performance metrics, such as workload, response times,

throughput and available resources, as measured from the running system. These values are

repeatedly calculated over fixed intervals, which are signalled by a pre-scheduled timer task.

Performance values that are calculated at the end of each interval take into consideration

all measured data collected during that interval. For example, the average response time

in a certain interval is calculated by adding all response times of all method calls received

during that interval and dividing them by the number of received method calls. Workload is

calculated by counting the number of method requests received over the considered interval.

Performance information is inferred with each new set of calculated metric values, rather

than with each new collected measurement. A set of metric values calculated over an interval

is referred to as a raw data sample. Inferred information samples have the same format and

store the same type of data as raw data samples. Nonetheless, the critical difference is that

inferred data represents the result of analysing and merging multiple raw data samples into

fewer, more reliable and higher-level data.

The performance information inference process works as follows. Initially, if no inferred

information is available, the first available raw data sample is considered as the current

inferred sample. After this, the current inferred sample is being updated with each newly

available raw data sample. New raw data samples are being obtained by the inference

process in different manners, depending on the way the learning process was configured at

start-up. If it was configured to update inferred data at runtime, then this process is executed

whenever a new raw data sample is calculated, at the end of each interval. In this case,

an EndPeriodNotifier timer task instance triggers the information inference process.

Otherwise, in case the inference process is configured to only be performed upon request,

raw data samples will be sequentially read from the history file in the order which they were

stored during runtime. The inferred data is updated with each new raw data sample read

from the history file.

Figure 4.5 shows the UML sequence diagram for the case when performance informa-

tion is being inferred during runtime. The EndPeriodNotifier instance associ-

ated with a managed EJB triggers the inference learning process, at the end of each

programmed interval. This is done by signalling the MonitoringDataHandler

instance to calculate a new set of performance metrics values over the last interval

and to create a new raw data sample. Raw data samples are represented by the

VariantMonitoredDataSample class. The MonitoringDataHandler creates

a new instance of the VariantMonitoredDataSample class and sets its monitored

Method, the calculated performance information - workload, response time and throughput

- and the environmental conditions information. Data on the current execution environment

includes the available CPU, memory and bandwidth. However, execution context metrics

are not currently collected in AQuA J2EE. The MonitoringDataHandler subsequently

asks the RGManager to add the new raw data sample to the currently active component’s

description. The newly created VariantMonitoredDataSample instance is sent as

a parameter for this call. The MonitoringDataHandler finds the identity of a RG’s

currently active redundant component by enquiring the associated RGManager instance.

Upon receiving a request for adding a new raw data sample, the RGManager forwards the

request to the VariantDescriptionManager instance associated with the currently

113



active redundant component. The VariantDescriptionManager instance adds the

new raw data sample to the history list and then updates the inferred information of the

managed component, as described in section 3.13.

Figure 4.5: UML sequence diagram for
the performance information inference process

4.6 Decision Policy-Based Management

AQuA J2EE’s adaptation logic was implemented using a decision policy-based solution.

Decision policies were specified using IBM’s ABLE Rule Language (ARL)10. In ARL, rules are

specified in dedicated .arl files, separated from the actual underlying system they have

to manage. In AQuA J2EE, the adaptation logic policies are specified in special-purpose

.arl files, separated from the rest of the framework implementation. Rules can be added,

deleted and modified by human system managers without the need to understand, modify,

or re-compile any of the underlying framework implementation functions. When using ARL,

multiple rule sets can be specified as part of a certain ARL rule base. Different inference

engines can be used for executing each separate rule set in the ARL rule base. This means

that each rule set can be executed by a different inference engine, as necessary. Possible

inference engines include forward or backward chaining, script, or fuzzy engines. The

Script inference engine was used for interpreting the adaptation logic rules in AQuA J2EE.

A fuzzy engine can also be used for example as part of AQuA J2EE’s learning mechanism.

10The ABLE Rule Language from IBM: www.research.ibm.com/able
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Several types of rules, or decision policies, were devised as part of AQuA J2EE’s adaptation

logic. Namely, rules were implemented for the anomaly detection, component evaluation

and adaptation decision functionalities. The main management goals of these policy types

were presented in section 3.11. In short, detection policies are responsible for triggering the

component evaluation process. They are used to detect the circumstances in which the

available redundant components should be evaluated and the optimal redundant component

identified. Evaluation policies are responsible for finding the optimal redundant components

at the time and in the running context the evaluation process is executed. Finally, adaptation

decision policies establish whether the managed application should actually be adapted.

Adaptation decisions are taken considering the optimal redundant components indicated by

the evaluation policies, as well as other factors, such as the cost and risk of the adaptation op-

eration and its predicted outcome. The decision policy-based adaptation logic implemented

for AQuA J2EE is discussed in more detail over the following subsections.

4.6.1 Anomaly Detection Policies

Detection policies are used to analyse the incoming monitoring data and determine the circum-

stances in which system optimisations are necessary, or possible. Potential problems detected

are subsequently signalled to the evaluation module.

In the current AQuA J2EE implementation, detection policies were designed to analyse moni-

toring data and sense when thresholds were being exceeded. More precisely, detection policies

were implemented to spot cases in which certain parameters values crossed certain predefined

thresholds. The performance metrics presently considered are response time, throughput and

incoming load on the monitored methods. Other monitoring metrics can be added as needed,

including for example the availability of software and hardware resources.

In AQuA J2EE, anomaly detection policies were implemented as ARL rule sets, accessible

from a dedicated.arl file. An ARL Script inference engine was configured to interpret the

detection policies. The MethodProprietyChangeEvaluatorclass was implemented to

use detection policies for analysing received monitored data samples. (Figure 4.8 and Figure

4.11). Namely, the detection rules are called to evaluate any changes that may have occurred

in the monitoring data collected. The specified policies are executed every time a new value

becomes available for one of the considered performance metrics. In the current implemen-

tation, monitored performance metrics consist of response time, workload and throughput.

These metrics are considered at the EJB method level. Average values are calculated for each

performance metric over a certain preconfigured period. For each metric, a new average value

is calculated at the end of each period. This triggers the execution of the anomaly detection

rules for that metric. The detection rules use collected runtime data on monitored methods

and detect possible anomalies.

When triggered, detection policies analyse the data received as input and provide an action

result as an output. Input data contains the name of the performance metric which caused

the rule set execution. The rule set is started whenever a new value becomes available for

that metric. Input data also contains the new calculated value for the respective performance

metric. The current implementation of the anomaly detection logic compares the new input

value with the previously stored metric value. If the two values indicate that the threshold
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set for that metric was crossed, a component evaluation operation is recommended. This is

done by returning a ’change’ response value as the result of the anomaly detection pro-

cess. The possible output results of the anomaly detection process can be ’change’ and

’do not change’. These two actions indicate whether or not a component evaluation is

recommended, based on the recently monitored application data.

More complex detection policies can be implemented to recommend changes based on

analysing a more extensive set of collected data samples. For example, a detection policy could

be specified to recommend a ’change’ action only in case a threshold is being crossed for

multiple consecutive periods, rather than for a single period. However, for the experimental

tests performed (chapter 5), this behaviour was achieved by tuning the interval over which

average metric values were being calculated.

Different detection policies with different configurations are used for analysing each perfor-

mance metric. In the current implementation, all detection policies for all metrics focus on

identifying cases when certain thresholds are being exceeded. The actual threshold values are

separately configurable for each different metric.

Additional detection policies were implemented for avoiding false or cascaded alarms. As

such, occurrences of small variations across a specified threshold are being ignored and not

signalled to the evaluation functionality. This avoids repeated changes from being recom-

mended as a result of fine oscillations around a specified threshold. An insensibility zone was

defined for this purpose around each threshold value. Based on this, if currently stored metric

values are all on a certain side of a threshold, a change is only recommended in case a new

received value crosses the threshold and exceeds it by a certain, configurable amount (Figure

4.6 and Listing 4.2 - lines 50-57).

Further anomaly detection policies can be implemented for detecting additional event types

of interest. For example, policies can be specified to detect significant changes in the execu-

tion environment, or to analyse data over longer periods [28]. Sets of sequentially monitored

data samples could be matched against predefined patterns; each pattern would signify the

occurrence of a different anomaly type. When currently monitored data fitted one of the spec-

ified patterns, the detection policies would conclude that an anomaly has occurred. As other

examples, detection policies can also be specified to trigger the component evaluation process

based on the occurrence of exception events, or based on the time of day, week, month, or

year.

AQuA J2EE was designed to allow human system managers to seamlessly add, delete or mod-

ify the framework’s decision policies. System administrators can specify detection policies as

needed to reach their management goals without necessitating a thorough understanding of

the underlying framework mechanisms. Detection policies are defined in the dedicated .arl

file, using the ABLE Rule Language (ARL). Various policies can be devised to analyse any of

the available monitoring data and detect diverse performance anomalies in a customised man-

ner. Additional types of monitored data and returned recommended actions can be obtained

and respectively defined, as necessary.
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Figure 4.6: workload data example -ignoring oscillations around a threshold
when triggering change

Listing 4.2: anomaly detection policies - example

1 %\begin{verbatim}

2 C a t e g o r i c a l a c t i o n = new C a t e g o r i c a l ( new S t r i n g [ ] {”change ” , ” do not change ”} ) ;

3

4 //other v a r i a b l e d e c l a r a t i o n s

5 // . . .

6

7 inputs { changedPropertyName , newPropertyValue } ;

8 outputs { a c t i o n } ;

9

10 //the main rule s e t

11 void process ( ) using S c r i p t {

12

13 // d e t e c t i o n rule f o r changes in the workload property

14 ch an ge in load :

15 i f ( changedPropertyName == LOAD PROPERTY NAME )

16 then{

17

18 // s e t the aux v a r i a b l e s values

19 // used to ev aluat e the property change

20 auxNewPropertyValue = newPropertyValue ;

21 auxThreshold = loadThreshold ;

22 auxPreviousPropertyValue = prev ious load ;

23

24 //invoke another rule s e t f o r

25 // ev aluat in g the property value change

26 // t h i s s e t s the value of the a c t i o n output r e s u l t

27 invokeRuleBlock ( ” evaluatePropertyChange ” ) ;

28

29 prev ious load = auxPreviousPropertyValue ;
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30

31 }

32

33 // d e t e c t i o n rule f o r changes in the throughput property

34 // . . .

35

36 // d e t e c t i o n rule f o r changes in the throughput property

37 // . . .

38 }//end process

39

40

41 //rule s e t used by the main process rule s e t

42 //to ev aluat e changes in property values

43

44 void evaluatePropertyChange ( ) using S c r i p t {

45

46 d o n ot ch an ge t h resh old n ot crossed :

47 i f ( ( ( auxNewPropertyValue > auxThreshold ) and ( auxPreviousPropertyValue >

auxThreshold ) )

48 or ( ( auxNewPropertyValue <= auxThreshold ) and (

auxPreviousPropertyValue <= auxThreshold ) ) )

49 then{ auxPreviousPropertyValue = auxNewPropertyValue ; a c t i o n = ”

do not change ” ;}

50

51 change threshold crossed downwards with more thanmin difference :

52 i f ( ( auxPreviousPropertyValue > auxThreshold ) and ( auxNewPropertyValue

<= auxThreshold )

53 and ( auxThreshold − auxNewPropertyValue > minDifference ) )

54 then{ auxPreviousPropertyValue = auxNewPropertyValue ; a c t i o n = ”change ” ;

}

55 d o n ot ch an ge t h resh old crossed d own ward s wit h less t h an m in d i f fe ren ce :

56 i f ( ( auxPreviousPropertyValue > auxThreshold ) and ( auxNewPropertyValue

<= auxThreshold )

57 and ( auxThreshold − auxNewPropertyValue <= minDifference ) )

58 then{ a c t i o n = ” do not change ” ; }

59

60 //ch an ge t h resh old crossed upward s wit h m ore t h an m in d i f fe ren ce :

61 // . . .

62

63 //d o n ot ch an ge t h resh old crossed upward s wit h less t h an m in d i f fe ren ce :

64 // . . .

65

66 }// evaluatePropertyChange

4.6.2 Component Evaluation Policies

Evaluation policies are used to determine the optimal redundant components in a given

execution environment. In the current AQuA J2EE implementation, evaluation policies

specify what redundant components are optimal in what execution conditions. For the

performed tests, the evaluation policies’ triggering conditions were defined based on the

incoming load on the components’ methods.

For the tested example scenario described in section 5.2, the information on which redundant

components were optimal under which workload ranges was obtained based on extensive
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testing procedures, which were run on the targeted managed application and execution

platform. More precisely, repetitive tests were performed to measure the performance of

each redundant component under different incoming loads. Collected data was ’manually’

analysed and the optimal redundant component determined for different load ranges.

Evaluation policies were accordingly specified to indicate which redundant component

to be used under each load range. AQuA’s learning mechanism was devised in order to

replace this manual process and automatically obtain and update such information instead,

during runtime. Thus, the goal of the learning functionality is to enable the management

framework to automatically determine optimal redundant components in various execution

environments. The automated learning mechanism should be able to perform a similar

process to the manual one described.

The evaluation procedure is executed by processing the available evaluation rules, as

follows. For each evaluation rule, the current environmental values are compared against the

parameter values specified in the rule’s conditions. In case of a match the rule is triggered and

its action indicates the optimal redundant component. For the tested scenarios, the workload

value of the current execution environment is compared against the workload value ranges

specified in the rules’ conditions. An evaluation rule is triggered if the current load value fits

inside the value range specified in the rule’s condition. The corresponding rule action sets the

name of the optimal redundant component associated with that rule (e.g. Listing 4.3 - lines

61-63).

The component evaluation policies were implemented as an ARL rule set interpretable by

a Script inference engine. The evaluation rule set is executed whenever the anomaly

detection policies (section 4.6.1) signal a potential performance problem or an optimisation

opportunity. At the implementation level, the evaluation rules are triggered when the

anomaly detection rules return a ’change’ output result. At this point, the evaluation

rules consequently determine the optimal change that could be performed considering the

available redundant components and the current execution environment.

Whenever the evaluation rules are triggered, they receive a set of input data to process (e.g.

Listing 4.3 - line 1). The input data includes the name of the monitored EJB component and

the EJB method to analyse. It also contains performance information on the EJB method

considered in the anomaly detection and evaluation process. This information provides

the latest monitoring values for the performance metrics considered (i.e., response time,

throughput and workload). Finally, evaluation rules also receive input information on the

current runtime environment status. Method information received as input by the evaluation

rules consists of the method signature and the method’s runtime monitoring data for the

most recent period. Runtime monitoring data includes the method’s average response

time, workload and throughput over the preceding period. Runtime environment data

includes current system CPU, memory and network bandwidth availability. The current

AQuA J2EE implementation assumes that all EJB components run on the same hardware

node. Additional environmental information can be added if needed. For example, for

an analysed EJB, additional information can be stored on the currently active redundant

components used by the neighbouring RGs of that EJB.

The output results of the evaluation rules indicate whether or not an adaptation operation is

recommended and if it is then which redundant component would be optimal if activated at

the current point (e.g., Listing 4.3 - line 2).
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Listing 4.3: component evaluation policies - example

1 inputs {className , methodMonitorJB , environmentDataJB } ;

2 outputs {performSwap , optimalVariantName} ;

3

4 void process ( ) using S c r i p t {

5

6 // c a l c u l a t e time period s i n c e l a s t swap operat ion was performed

7 : t i m e s i n c e l a s t s w a p m i l l i s = r e q u e s t t i m e i n m i l l i s − s w a p t i m e i n m i l l i s ;

8

9 //get curren t performance parameters values

10 : load = methodMonitorJB . getLoad ( ) ;

11 : throughput = methodMonitorJB . getThroughput ( ) ;

12 : response t ime = methodMonitorJB . getResponseTime ( ) ;

13

14 : methodName = methodMonitorJB . getStoredMethod ( ) . getName ( ) ;

15

16 //other r u l e s and con d i t ion s

17 // . . .

18

19 c o n s i d e r a d a p t a t i o n e n o u g h t i m e s i n c e l a s t s w a p a n d r i g h t e v e n t s o u r c e :

20 // v e r i f y t h a t enough time has passed s i n c e the l a s t adaptat ion a c t i o n

21 //also v e r i f y t h a t the EJB method t h a t t r i g g e r e d

22 // the ev aluat ion p o l i c i e s are the ones configured

23 // f o r t h ese p a r t i c u l a r p o l i c i e s

24 i f ( t i m e s i n c e l a s t s w a p m i l l i s > m i n s w a p i n t e r v a l m i l l i s

25 and className == AccountBean ClassName

26 and methodName == GetAccountID MethodName )

27 then{

28

29 //invoke the rule s e t t h a t f in d s

30 // the optimal redundant component ,

31 // based on the load performance metric

32 // s e t s the optimalVariantName byLoad

33 invokeRuleBlock ( ”processMethodLoad ” ) ;

34 // s e t s the optimalVariantName byThroughput

35 invokeRuleBlock ( ”processMethodThroughput ” ) ;

36 // s e t s the optimalVariantName byResponseTime

37 invokeRuleBlock ( ”processMethodResponseTime ” ) ;

38

39 //invoke the rule s e t t h a t determines the

40 // f i n a l optimal redundant component ,

41 // con s id er in g the optimalVariantName byLoad ,

42 // optimalVariantName byThroughput and

43 // optimalVariantName byResponseTime

44 // s e t s the optimalVariantName

45 invokeRuleBlock ( ” determineOptimalVariant ” ) ;

46

47 //invoke the rule s e t t h a t uses adaptat ion d e c i s i o n s

48 // to conclude whether to adapt the a p p l i c a t i o n using the

49 // optimal redundant component

50 invokeRuleBlock ( ” takeAdaptat ionDecision ” ) ;

51 }

52 }//end process rule s e t

53

54 //rule s e t − processMethodLoad

55 //determines the optimal v a r i a n t based on the curren t load

56 // s e t s the optimalVariantName byLoad
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57 void processMethodLoad ( ) using S c r i p t {

58 load ov er t h resh old :

59 i f ( load >= loadThreshold )

60 then optimalVariantName byLoad=ThreeHundered BeanAge VariantName ;

61 load un d er t h resh old :

62 i f ( load < loadThreshold )

63 then optimalVariantName byLoad=Ten BeanAgeVariantName ;

64 }//end processMethodLoad rule s e t

4.6.3 Adaptation Decision Policies

Adaptation decision policies are used to determine whether the managed software application

should actually be adapted. The adaptation decision process compares the potential benefits

of an adaptation solution with the predicted costs and potential risks of the required

adaptation operations. Optimisation solutions are identified and recommended by the

evaluation module (subsection 4.6.2). Implementing optimisation solutions into the running

application involves one or more component-swapping operations. Adaptation decisions

consider the cost of the required component-swapping operations and the potential risk of

not actually obtaining the predicted performance benefits or even worsening the overall

system performance. In case the adaptation decision policies conclude that a proposed

optimisation should be enforced, the system is accordingly reconfigured by activating the

optimal redundant components suggested by the evaluation policies.

In the current implementation, the adaptation policies select for activation the redundant

component indicated as optimal by the evaluation module. Listing 4.7 shows how two

different redundant components can be selected as optimal, based on the rapport between the

current incoming load and a specified load threshold. Adaptation decision policies are also

responsible for choosing a final optimal redundant component in case more possibilities exist

based on evaluating different metrics, or different component methods. For example, a certain

redundant component may be optimal under the current environment when only considering

the incoming load environmental metric. Nonetheless, another redundant component may

be considered optimal with respect to another environmental metric, such as available system

resources. Adaptation policies were specified in AQuA J2EE to resolve any such conflicts

and select a unique optimal redundant component for activation. For the tested application

scenarios the response time metric was considered to be the most important one for selecting

optimal redundant components. The rationale behind this consideration is presented in more

detail in subsection 5.2.8. As such, the current adaptation policies in AQuA J2EE select the

optimal redundant component with respect to response times as the final optimal redundant

component to be activated (Listing 4.6).

Additional policies were implemented and are used to prevent reactions to false alarms.

Conforming to these decision policies, the application will not be adapted if another

adaptation operation was executed within a certain preceding interval (Listing 4.4). This

avoids cascading adaptation decisions to be triggered based on monitoring data obtained

during recent system adaptations. For example, suppose that a significant increase in the

incoming workload is detected on a certain managed component. This triggers the evaluation

process, which starts searching for potential optimisations in the new execution context.

The evaluation module presumably establishes that a redundant component other than the
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currently active one would be optimal under the new increased workload. The possible

optimisation is sent to the adaptation decision module, which chooses to activate the new

optimal redundant component. The component activation mechanism is instructed to

perform the corresponding hot-swapping operation. During the component hot-swapping

process, all incoming client requests on the adapted component are being delayed (section

4.7). For this reason, the incoming workload measured on the managed component during the

adaptation period will be significantly decreased. In turn, this can cause another evaluation

and adaptation to be triggered and a redundant component optimal under smaller workloads

to be selected for activation. Such management behaviour would be undesirable and should

be avoided. The problem that would cause this behaviour is that monitoring data collected

during an adaptation process would be interpreted as if it was collected during normal

system functioning. A special-purpose adaptation decision was implemented in AQuA J2EE

so as to avoid this situation (Listing 4.4).

For the tested application scenarios, an adaptation decision policy was also implemented to

prevent an optimal redundant component from being activated if it was already active at the

time the decision was made (Listing 4.4). Such management behaviour would have been

undesirable for the particular goals of the tested example scenarios (section 5.2.1). Situations

in which this behaviour would have occurred could be generally avoided by correctly

specifying detection and evaluation policies. Otherwise, for example, it could happen that

the evaluation module finds the same redundant component to be optimal in two different

running contexts. Suppose a threshold is specified for a certain performance metric, such as

throughput, without two different redundant components being available for the two corre-

sponding execution contexts delimited by that threshold. In such a case, when the threshold is

crossed, an evaluation will be triggered. However, the currently active redundant component

will be the same one detected as the optimal one in the new execution context. Re-activating

the same redundant component under these circumstances would bring no benefits to the

system; it should thus be avoided by the adaptation decision functionality. Nonetheless, other

scenarios can be envisaged in which re-activating a redundant component would actually

be a desirable behaviour. A conclusive example is the case when a mini-rebooting strategy,

such as the one proposed in the JAGR project [20], would be employed for providing a

certain degree of system fault-tolerance. In the case of EJB applications, such mini-rebooting

actions can be implemented by means of EJB hot-deployment operations. AQuA J2EE can be

used to implement the strategy proposed in the JAGR project by re-activating a redundant

component in case it was determined to cause erroneous system behaviour. In this case, the

adaptation decision policy that did not allow for redundant component to be re-activated

would not be used.

In general, AQuA’s adaptation logic module was designed to provide the means for human

system administrators to seamlessly specify the high-level decision policies governing

the desired system management behaviour. Additional policies can also be specified to

consider the cost of the required adaptation operations and the outcomes of previous, similar

adaptation decisions. Such policies were not used in the tested scenarios (subsection 5.2.6),

since the monitored adaptation operations proved to have a limited, sustainable impact on

system performance. Decision policies can also be designed to deal with eventual, conflicting

optimisation demands.
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Listing 4.4: adaptation decision policy to

ensure minimum time between subsequent adaptations

1 // c a l c u l a t e time period s i n c e l a s t swap operat ion was performed

2 : t i m e s i n c e l a s t s w a p m i l l i s =

3 r e q u e s t t i m e i n m i l l i s − s w a p t i m e i n m i l l i s ;

4

5 // . . .

6

7 d o n o t a d a p t t o o l i t t l e t i m e s i n c e l a s t s w a p :

8 i f (

9 t i m e s i n c e l a s t s w a p m i l l i s <= m i n s w a p i n t e r v a l m i l l i s )

10 then {

11 performSwap = new Boolean ( f a l s e ) ;

12 optimalVariantName = n ul l ;

13 }

Listing 4.5: adaptation decision policy to

not activate an already active component

1

2 //decides wheher to adapt the a p p l i c a t i o n or not − to perform the component hot−

swapping or not

3 // s e t s the performSwap ( and poss ib ly s e t s the optimalVariantName to null , e . g . , f o r

a f a l s e performSwap )

4 void takeAdaptat ionDecision ( ) using S c r i p t {

5

6 s w a p i f c u r r e n t a n d o p t i m a l v a r i a n t s a r e d i f f e r e n t :

7 i f ( currentVariantName != optimalVariantName )

8 then {

9 performSwap = new Boolean ( t rue ) ;

10 currentVariantName = optimalVariantName ;

11 date = new Date ( ) ;

12 s w a p t i m e i n m i l l i s = date . getTime ( ) ;

13 }

14 e l s e {

15 performSwap = new Boolean ( f a l s e ) ;

16 optimalVariantName = n ul l ;

17 }

18 }//end takeAdaptat ionDecision

Listing 4.6: adaptation decision policy to

determine final optimal component from multiple candidates

1 //determines the optimal v a r i a n t con s id er in g the ( poss ib ly d i f f e r e n t ) optimal

v a r i a n t s based on load , throughput , response time . . e t c

2 // d i f f e r e n t pol icy used f o r each component / method

3 // s e t s the optimalVariantName

4 void determineOptimalVariant ( ) using S c r i p t{

5 decision for AccountBean getAccountId :

6 i f ( ( className == AccountBean ClassName ) and

7 (methodName == GetAccountID MethodName ) )

8 then{

9 optimalVariantName = optimalVariantName byResponseTime ;

10 }//end determineOptimalVariant
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Listing 4.7: adaptation decision policy - determine optimal redundant compo-

nent with respect to load only
1 //determines the optimal v a r i a n t based on the curren t load

2 // s e t s the optimalVariantName byLoad

3 void processMethodLoad ( ) using S c r i p t{

4 load ov er t h resh old :

5 i f ( load >= loadThreshold )

6 then optimalVariantName byLoad=ThreeHundered BeanAge VariantName ;

7 load un d er t h resh old :

8 i f ( load < loadThreshold )

9 then optimalVariantName byLoad=Ten BeanAgeVariantName ;

10 }//end processMethodLoad

4.7 Component Activation

The component activation functionality is used to perform component-swapping operations,

during the actual application adaptation process. The application adaptation operations to be

performed are dictated by AQuA’s adaptation logic (i.e. by the adaptation decision policies).

In AQuA J2EE, the component activation function was implemented to work on the JBoss

application server. Using this implementation, EJB components can be swapped at runtime

without breaking client sessions or raising exceptions. The implemented solution is based on

the hot-deployment facility provided by JBoss. The hot-deployment function allows packages

to be dynamically deployed on JBoss by copying them into a certain deployment directory,

without the need to stop and restart the server. JBoss periodically verifies its deployment

directory and senses any changes in the existing packages. Redundant components can dif-

fer in their EJB implementation class, or in their deployment descriptors. JBoss will detect

any change in any of the package files representing a redundant component. A package hot-

deployment operation is triggered whenever changes are detected in an existing package, or

when new packages are detected. In other words, JBoss performs a hot-deployment operation

for all EJBs in a package, whenever that package becomes available for the first time in the

deployment directory, or when a new version is loaded for an existing package. In the first

scenario, all EJBs in the new package are simply deployed on JBoss, while the server and its

applications continue to run. In the second scenario, the hot-deployment process involves two

operations. First, all EJBs in the old package version are un-deployed. Second, all the EJBs in

the new package version are being deployed instead.

The main difficulty with JBoss’ hot-deployment facility is that in most cases it cannot be suc-

cessfully used to hot-swap EJBs while under heavy workloads. There are two main reasons

behind this problem. First, as previously indicated, when JBoss performs a hot-deployment

operation, it first un-deploys the old EJB and then deploys the new EJB variant. This creates an

availability gap between the two deployment operations, during which neither the old nor the

new EJB variants are available. The JBoss application server used to work with AQuA J2EE

was modified so as to solve this problem. Namely, in the modified JBoss version, all incoming

requests are being intercepted and delayed for the duration of a hot-deployment operation.

This means that client requests for a certain EJB will be delayed for the time the EJB is being

replaced by a newer variant. Once the deployment operation is completed, the delayed re-

quests are let through and handled by instances of the new EJB variant.
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A second hot-deployment related problem occurs in JBoss when Stateful Session EJBs are used

as part of an EJB application. This is because Stateful Session bean instances maintain their

state between successive client calls, for the entire duration of a user session (subsection 2.4.2).

As such, all client calls belonging to a certain session must be handled by the same Stateful

Session bean instance. Thus, problems will occur if a Stateful Session bean is hot-swapped in

the middle of a user session; the reason is that subsequent client calls belonging to that session

will no longer be able to find the particular Stateful Session instance that used to handle this

session. Furthermore, the same problem occurs for bean instances that are used by Stateful

Session beans, since they are also being maintained as part of the session state. This problem

was solved in the modified JBoss server as follows. Before the hot-deployment operation is

started, the container of the EJB to be replaced is instructed to block all requests for the cre-

ation of new EJB instances; all other requests are let through. This allows started user sessions

to terminate, while not allowing any new session to be initiated. When no more instances of

the targeted EJB are available in the container, the hot-deployment operation is executed; after

hot-swapping terminates, all incoming requests are unblocked. As a further improvement, the

EJB instance cache of the targeted EJB is flushed as soon as no activity is detected on the stored

instances for a certain period.

Part of the implemented component activation solution, multiple redundant components are

prepared and made available at runtime, from a known location. The component activation

module receives information on the system file path where each available redundant compo-

nent of each managed RG is located. Each redundant component is provided in the form of

a JBoss deployable package, such as a .jar or an .ear archive. File system directories are

used to store redundant components. Each Redundancy Group (RG) is represented by a sepa-

rate directory. This means that all redundant components that belong to a certain Redundancy

Group (RG) are stored in a single directory, which was dedicated to that RG. A mapping exists

between the unique name of an existing RG and the name of the corresponding directory used

to store the redundant components of that RG. In AQuA J2EE component-swapping opera-

tions are performed by copying the package of the redundant component to be activated over

the package of the currently active redundant component, in JBoss’ deployment directory.

A Graphical User Interface (GUI) was also implemented to allow system administrators to

manually manage redundant components. In the current version, the GUI displays all man-

aged RGs and their available redundant components. It also allows redundant components to

be individually selected and activated. The GUI can be further extended so as to also support

the addition, removal and versioning of RGs and associated redundant components. Thus,

redundant components can be activated whether automatically, based on AQuA J2EE’s adap-

tation logic decisions, or manually, based on a system administrator’s decisions (Figure 4.7).

Both cases use the implemented component-swapping procedure to activate redundant com-

ponents.
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Figure 4.7: activating redundant components - manual and automatic options

4.8 AQuA J2EE’s Implementation Classes

Explained

4.8.1 Implementation Classes

This subsection gives an overview of AQuA J2EE’s implementation classes and explains the

main roles and functionalities of each class. It also shows how classes work together in order

to provide AQuA’s main management functionalities. The manner in which the JBoss appli-

cation server was modified so as to work with the AQuA J2EE prototype is also described.

The UML class diagram in Figure 4.8 shows the main classes used to implement AQuA J2EE,

their interconnections and their main association roles. Each class is briefly described over the

following subsections. Appendixes A.2, A.1 and A.3 provide implementation details on the

way JBoss classes were modified in order to be integrated with the AQuA framework.
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Figure 4.8: UML class diagram for AQuA J2EE

The LogInterceptor class

The LogInterceptor class is part of the JBoss application server’s implementation. In

AQuA J2EE, system instrumentation was implemented by modifying JBoss’ EJB containers.

More precisely, one of the interceptor classes in the container interceptor chain was modified.

Namely, the LogInterceptor class was instrumented to capture messages to and from the EJB

instances managed by the container. The UML diagram in Figure 4.9 shows how the mod-

ified LogInterceptor is integrated and used in a typical JBoss container for managing Entity

EJBs. As indicated in the figure, an instance of the modified LogInterceptor class intercepts

all incoming client requests and corresponding outgoing responses. These events, along with

some associated data, are forwarded to the management framework instance that was given

to the LogInterceptor instance when it was created. The modified JBoss server was integrated

with two management frameworks. These were the COMPAS monitoring framework and

the AQuA J2EE management framework. When integrated with COMPAS, the LogIntercep-

tor was modified to send its intercepted events to the COMPAS Client [28]. As indicated

in the figure, the JBoss EJB Instance Pool was also modified to send relevant events to the

COMPAS client. Such events included the creation and removal of instances for the managed

EJB class. The goal was to enable COMPAS to compute the current number of available in-

stances for each monitored EJB class at all times. When integrated with AQuA J2EE, JBoss’

LogInterceptor was modified to send relevant events to an instance of the RGManager class.

In AQuA J2EE, the RGManager is the main class responsible for managing a Redundancy

Group. In the adopted decentralised approach, Redundancy Groups were designed at the EJB

granularity, and one management framework instance was created for each managed RG. Im-

plicitly, as there is one JBoss container per deployed EJB class and one RGManager instance for
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each management framework instance, there will be one RGManager instance associated with

each JBoss EJB container. Each JBoss container contains in turn one LogInterceptor instance.

As an alternative solution to modifying the existing JBoss LogInterceptor class, a new inter-

ceptor could have been implemented. In this case, JBoss EJB containers would have been

correspondingly configured to use the new interceptor in their respective interceptor chains.

Nonetheless, this approach would not bring a significant contribution with respect to the tar-

geted research goal, which was to test the management capabilities of the AQuA framework

prototype.

The way the LogInterceptor class was modified for sending monitored data to AQuA J2EE is

described in more detail next. The design and implementation of the JBoss server, including

its plugin-in based interceptor chain, were described in more detail in section 4.1.1. The rele-

vant instrumentation code and explanatory comments inserted in the LogInterceptor class are

listed in appendixes A.2 and A.1.

In JBoss, an instance of the LogInterceptor class is created whenever a new EJB container is in-

stantiated to manage a newly deployed EJB component. Part of the JBoss server modification,

the LogInterceptor’s instantiation process was augmented to create an instance of the RGMan-

ager class. In turn, the RGManager will instantiate the rest of the AQuA J2EE framework’s

classes. There is one AQuA J2EE instance for managing the performance of each deployed

EJB, given that the EJB was previously configured to be managed by AQuA. For instantiating

the framework, the LogInterceptor initially retrieves the managed EJB’s metadata, including

the EJB’s JNDI name and class name. It then establishes whether or not an RGManager in-

stance already exists for this managed EJB component. An RGManager instance may already

exist in case the managed EJB is not a new EJB component (or RG) in the system. This can

happen if an EJB with the same JNDI name has previously been deployed on JBoss, and at

the present time a new EJB class is deployed in place of the old one. This is equivalent to a

redundant component implementing the EJB component with that JNDI name being swapped

in place of the old redundant component. In this case, the RG for the managed EJB component

is not new in the system. However, the EJB class providing the RG’s interface was changed via

a hot-deployment operation. The old EJB class is un-deployed and the EJB container manag-

ing it destroyed, along with its LogInterceptor instance. When the new EJB class is deployed,

a new EJB container and LogInterceptor instances are being created. However, it is impor-

tant to note that one AQuA J2EE instance is created and tied to a Redundancy Group, as a

whole managed entity. It is not tied in particular to any of the redundant components (i.e.

or EJB classes) providing the RG’s external methods. Thus, the AQuA J2EE instance should

not be destroyed and recreated in case different redundant components are activated in the

RG. If this happened, all data accumulated for that RG would be lost whenever a different

redundant component was activated, by hot-deploying a different EJB class. This would not

be the desired behaviour. For this reason, an AQuA J2EE instance, including the RGMan-

ager instance, is maintained for the entire duration a RG exists in the system. This is done

by maintaining a list of all instantiated RGManagers in a single RGManagerAdministrator in-

stance. The RGManagerAdministrator instance is a singleton entity created the first time the

JBoss server is started. Each RGManager instance for each RG is uniquely identified by its

RG name. A unique RG name is created based on the unique JNDI name of the managed EJB

component. The JNDI name of an EJB does not change when different EJB classes are swapped

and activated in a RG. During its instantiation, the LogInterceptor class enquires the RGMan-

agerAdmintsrator about the existence of an RGManager with the JNDI name of the EJB it
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needs to manage. If an RGManager instance does not already exist, the LogInterceptor creates

one and registers it with the RGManagerAdmnistrator. The JNDI name of the managed EJB

component is associated with the newly registered RGManager instance in the RGManager-

Admministrator’s list. The name of the EJB class being deployed is also used to retrieve the

EJB’s provided methods and compare them with the list of methods that should be monitored,

conforming to AQuA J2EE’s configuration. During runtime, the LogInterceptor only uses the

created framework instance in case its managed EJB is indicated as a component that should

be managed by AQuA J2EE. This is specified in the management framework’s configuration.

This implies that framework instances are only created and used for those EJB components

that AQuA J2EE was previously configured to manage. In case an RGManager instance does

already exist, the LogInterceptor instance will simply store and use this instance as the contact

point with the AQuA J2EE framework.
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Figure 4.9: instrumenting JBoss’s EJB container

The RGManager class

The RGManager class is a central entity in the AQuA J2EE implementation. It coordinates the

core management operations for a Redundancy Group (RG) and is the main point of contact

between AQuA J2EE and the underlying managed system. In the current implementation, all

monitoring data extracted from the JBoss server platform is sent to the RGManager for further

processing. An RGManager instance is created for each managed RG. This operation is per-

formed the first time an EJB class is being deployed for that RG. The RGManager instantiation

process is controlled by a LogInterceptor instance. This LogInterceptor instance is part of the

JBoss container that manages the deployed EJB. Figure 4.10 shows how a LogInterceptor be-

longing to a JBoss container is related to an RGManager belonging to an AQuA J2EE instance,
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for managing a certain deployed EJB component, as part of a RG.

At its construction, the RGManager class receives the JNDI name and provided methods of the

EJB it has to manage. The JNDI name is used to uniquely identify the RG. From the list of EJB

provided methods, the RGManager identifies the ones that should be monitored as indicated

by AQuA J2EE’s current management configuration. The RGManager also retrieves the list of

the available redundant components for the RG it represents. This is done by reading the con-

tents of the system directory allocated to this RG, which is uniquely identified using the RG’s

name. In turn, the RG’s name is formed based on the unique JNDI name of the managed EJB

component. In the RG directory, there is one separate directory for each available redundant

component. Each such directory contains all sources to be deployed for the corresponding

redundant component (e.g., an .ear or .jar archive).

For each of the identified redundant components, the RGManager creates an instance of the

VariantDescriptionManager class, to manage the performance description (section 3.11.2) of

that redundant component. The RGManager maintains a list of all VariantDescriptionMan-

ager instances, identified by the corresponding redundant component name. This way, the

RGManager can always access performance information about any of the available redundant

components in the managed RG. Part of its instantiation process the RGManager subsequently

registers itself with the RGManagerAdministrator, so that it can be located and utilised when

needed. For example, JBoss’ LogInterceptor instances need to obtain references to RGManager

instances for sending them monitoring events from the running application. RGDecisionMan-

ager instances also need to access RGManager instances, in order to send them adaptation

decisions. The RGManager also creates one RGDecisionManager, one MonitoringDataDis-

patcher and one ComponentActivator instances. The main roles and functionalities of these

classes are described in the following paragraphs.

Once created, an RGManager instance can receive method invocation events from the system

monitoring functionality, which is implemented in AQuA J2EE through JBoss’ LogInterceptor.

Method invocation events are forwarded to the corresponding MonitoringDataDispatcher in-

stance for further processing. The LogInterceptor also sends method completion events to

RGManagers, which are forwarded in a similar manner to the MonitoringDataDispatcher. In

case the RGDecisionManager takes an adaptation decision, based on current monitoring data,

available information and decision policies, it instructs the RGManager to enforce that deci-

sion into the running application. The redundant component to be activated as part of the

adaptation operation is indicated. The RGManager subsequently instructs the ComponentAc-

tivator to activate the specified redundant component. When the new redundant component

has been successfully activated, the RGManager updates its information on the current appli-

cation configuration (i.e., which redundant component in the managed RG is currently active).

When AQuA J2EE is configured to infer performance information from monitoring data dur-

ing runtime (section 4.5), the RGManager receives monitoring data samples as soon as they

become available. Whenever it receives a new data sample, the RGManager identifies the

currently active redundant component and forwards the data sample to the corresponding

VariantDescriptionManager, for further processing.
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Figure 4.10: AQuA J2EE’s integration with JBoss

The MonitoringDataDispatcher class

The MonitoringDataDispatcher class is responsible for dispatching method invocation events

to the entities responsible of handling such events. The MonitoringDataDispatcher receives

method invocation events from the corresponding RGManager, part of the same AQuA J2EE

framework instance. Received events are being dispatched to the corresponding monitoring

data handlers, based on the respective methods for which each event was issued. One

monitoring data handler is available for managing each method. All events generated by

monitoring a certain method are being dispatched to the monitoring data handler responsible

for that method. Instances of the MonitoringDataHandler class are used for handling mon-

itoring data and events. Thus, a MonitoringDataDispatcher dispatches method invocation

events to MonitoringDataHandler instances. One MonitoringDataDispatcher instance is

created and associated with each RGManager. Multiple MonitoringDataHandler instances

are created for each RGManager, each instance being responsible for a separate monitored

method.

The MonitoringDataHandler class

The MonitoringDataHandler class is responsible for managing and processing collected

monitoring data for a certain component method. As previously explained, there is one

AQuA J2EE instance managing each RG. This AQuA J2EE instance is used to manage the RG

irrespective of the currently active redundant component in that RG. In conformance with

this, a single MonitoringDataHandler instance is created and allocated for managing a certain

(RG) method, regardless of the currently active redundant component handling requests

for that method. As such, one MonitoringDataHandler instance is created for each external

method a RG provides. The MonitoringDataDispatcher associated with the RG creates the

required MonitoringDataHandler instances, during its own instantiation process.

During runtime, a MonitoringDataHandler instance receives monitoring data from the Moni-

toringDataDispatcher. This includes method invocation and execution completion events, as

well as method response time data. As explained in subsection 4.8.3, the MonitoringData-

Handler uses incoming monitoring data to periodically calculate performance metric values,

including method response times, workload and throughput. An EndPeriodNotifier timer

task is created and scheduled during the instantiation process of the MonitoringDataHandler.

The role of this timer task is to notify the MonitoringDataHandler instance when to calculate
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method-related performance values. Such notifications are regularly sent at a fixed timed

interval, configured when the timer task is created.

The performance values calculated for the most recent completed interval are stored

in a MethodMonitorDataJB JavaBean instance. Changing the values stored in this Jav-

aBean instance at the end of each interval causes a MethodPropertyChangeEvaluator to

evaluate the change and detect or predict any potential performance anomalies (Figure

4.11). In its constructor, the MonitoringDataHandler creates and instance of the Method-

PropertyChangeEvaluator class and registers it as a property change listener for the

MethodMonitorDataJB JavaBean. This way, any change in the considered metric values is

detected and can be analysed.

The MethodMonitorDataJB JavaBean instance associated with each MonitoringDataHandler

instance is used to store monitoring performance data on the monitored method. Besides

this, an EnvironmentMonitorDataJB JavaBean instance is also created and associated with the

MonitoringDataHandler, in order to store environmental related monitoring data. Changes

in the environmental condition related metrics can be detected and analysed using the same

mechanism as the one used to spot changes at the method level.

The EndPeriodNotifier class

The EndPeriodNotifier class is used to schedule repeated time intervals for a monitoring data

handler, so the handler can regularly calculate its performance values. An EndPeriodNotifier

object is associated with each MonitoringDataHandler object that is created as part of an

AQuA J2EE instance.

The EndPeriodNotifier class is an extension of the java.util.TimerTask class. Thus, a

java.util.Timer object can be scheduled to repeatedly execute this task at regular intervals.

Each EndPeriodNotifier instance is created and scheduled with such a timer by the Monitor-

ingDataHandler instance that uses it. The actions performed as part of an EndPeriodNotifier’s

task involve calling the associated MonitoringDataHandler and notifying it to calculate and

update its performance metric values.

The MethodPropertyChangeEvaluator class

The MethodPropertyChangeEvaluator is used to analyse value changes that occur in the

considered performance metrics, during runtime. The MethodPropertyChangeEvaluator

class implements the java.beans.PropertyChangeListener interface. Thus, it can be registered

as a property change listener for Java Beans. As such, each MethodPropertyChangeEvaluator

object is registered with a MethodMonitorDataJB Java Bean, so as to dynamically detect

changes in the Java Bean’s stored values. Detected value changes are analysed using decision

policies available from an ARL rule set file (i.e., the RuleSet EvaluateLoad.arl file).

If a potential performance anomaly is detected or predicted based on these policies, the

associated RGDecisionManager is notified to search for a possible optimisation solution.

In the current implementation, value change patterns are analysed based on the two most

recently monitored values, for any of the considered metrics. Namely, the current and the

previous monitored values are being compared. Another possible approach which was

developed for the management framework analyses a configurable number of recently

monitored values instead of only analysing the two most recent ones. Nonetheless, this

approach was not needed in the tested example scenarios and thus was not integrated in the
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current AQuA J2EE implementation.

The RGDecisionManager class

The RGDecisionManager class is used to take component evaluation and adaptation de-

cisions. It uses decision policies, which it can access from an ARL rule set file (i.e., the

GetOptimalVariant.arl file). When a PropertyChangeEvaluator detects a possible

performance anomaly, it notifies the associated RGDecisionManager, asking it to search for

possible optimisation solutions. Consequently, the RGDecisionManager uses the available

ARL policies for component evaluation and determines the optimal redundant component,

under the current execution conditions. Adaptation decision policies are subsequently used

to determine whether or not the optimal redundant component should actually be activated

in the running system. If a decision to adapt the application is taken, the RGDecision-

Manager notifies the associated RGManager to activate the selected redundant component.

The RGManager handles such application adaptation requests by forwarding them to the

associated ComponentActivator instance.

The RGDecisionManager is created by the RGManager during its own instantiation process.

The VariantDescriptionManager class

The VariantDescriptionManager class is used to manage the performance descriptions of re-

dundant components. A separate component description is available for the performance

characteristics of each separate redundant component in a RG. Thus, a VariantDescription-

Manager instance is created for each available redundant component in a RG. All component

descriptions in a RG can be accessed from the RGManager instance managing that RG. Each

VariantDescriptionManager instance can be uniquely identified by the name of the redundant

component it describes.

As presented in section 4.5, component descriptions consist of histories of monitored perfor-

mance values and of inferred performance information obtained from analysing those values.

System files are used in AQuA J2EE as storage support for component descriptions. The in-

formation stored in these files is updated with each new collected monitoring data sample.

This process can be performed whether repeatedly during runtime, or statically upon request.

When component descriptions are being updated during runtime, an instance of the Variant-

DescriptionManager class is used for this purpose. Namely, the VariantDescriptionManager

instance associated with the currently active redundant component constantly receives mon-

itored data samples for further processing. The description manager uses these data samples

to repeatedly update the redundant component’s description. The data history and inferred

information files used to store the component’s description are accordingly updated in effect.

The strategy and algorithm used for this purpose are described in more details in section 3.13.

4.8.2 Design Details for AQuA J2EE’s Adaptation Logic

AQuA J2EE’s adaptation logic is executed every time new data samples become avail-

able from the monitoring process. Part of the adaptation logic, the anomaly detec-

tion policies are initially evaluated. These policies are loaded and processed from the

RuleSet EvaluateLoad.arlARL rule set file. In case a potential performance anomaly
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is detected or predicted, the component evaluation policies are subsequently run. Finally, in

case a possible optimisation solution is found for the current execution context, the adaptation

decision policies are processed in order to evaluate the viability of the proposed adaptation

solution. Component evaluation and adaptation decision policies are loaded and processed

from the RuleSet GetOptimalVariant.arl rule set file. A positive adaptation deci-

sion outcome triggers the corresponding application adaptation process, which involves the

activation of the optimal redundant components.

The UML sequence diagram in Figure 4.11 illustrates the way the anomaly detection, evalua-

tion and adaptation process is implemented in AQuA J2EE. The adaptation logic execution is

triggered when a MonitoringDataHandler calculates one of its managed performance metrics,

thus updating the metric’s value. Figure 4.11 illustrates the case when the considered per-

formance metric is the incoming workload on a managed component method. The calculated

workload values are set in the associated MethodMonitorDataJB JavaBean. This JavaBean was

implemented so as to send a PropertyChangeEvent each time one of its property values was

being modified. Thus, the MethodMonitorDataJB sends a property-change event whenever its

workload property is changed. It also sends such events when the values of its response time

and throughput properties are being modified. This paragraph discusses an example where

the incoming load is the updated property. Nonetheless, a similar process is performed for the

other metrics.

Considering the workload metric example, each PropertyChangeEvent object contains the

new calculated load value and the previous load value for the managed component method.

It also contains the JavaBean instance which was the source of the property change event.

This JavaBean contains information on the managed component and method, as well as on

the other metric values, as needed. Property-change events raised by a certain MethodMoni-

torDataJB JavaBean are sent to a corresponding MethodPropertyChangeEvaluator for further

processing. The particular evaluator object that receives the events was previously registered

as a listener for the particular JavaBean instance raising those events. The MethodProper-

tyChangeEvaluator analyses a received event and determines the performance metric that

caused the event to be raised. In the described example the evaluator determines that the re-

ceived event was caused by a change in the incoming load metric. Based on this, the property

change evaluator triggers its logic for handling modifications in the incoming load metric. For

this purpose, the change evaluator uses the values it receives for the current and previous in-

coming loads and the available anomaly detection policies.

When a performance anomaly is detected, the MethodPropertyChangeEvaluator notifies the

associated RGDecisionManager to search for an adaptation solution to the potential problem.

When this situation occurs, the RGDecisionManager uses its component evaluation and adap-

tation decision policies to find a viable optimisation solution. If successful, it forwards the

adaptation decision result to the RGManager, indicating the redundant component to be acti-

vated. In turn, the RGManager requests the associated ComponentActivator object to perform

the adaptation operation.
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Figure 4.11: UML sequence diagram for AQuA J2EE’s adaptation logic

4.8.3 Design Details for AQuA J2EE’s

Data Dispatching Process

This section describes the way client method invocations are being intercepted and processed

by AQuA J2EE, in order to extract monitoring data from the running system. The UML se-

quence diagram in Figure 4.12 shows the main classes involved in this procedure, as well as

the way these classes interact in order to process method invocation events.

When a client invokes a method on an EJB method, the JBoss container that manages that EJB

intercepts the method request. The request is intercepted by the modified LogInterceptor in

the container. The LogInterceptor first verifies whether AQuA J2EE was configured to manage

this EJB component. If yes, the interceptor signals the method invocation event to the RGMan-

ager instance associated with this EJB container. JBoss containers were modified so as to only

communicate with the AQuA J2EE framework via RGManager objects. This approach sim-

plifies the instrumentation procedure for other middleware servers, as a single AQuA J2EE

class, the RGManager, needs to be integrated with the server. The RGManager instance asso-

ciated with an EJB container is notified whenever a method invocation event is being inter-

cepted in that container. The invoked Method and the unique JNDI name of the invoked EJB

are sent as parameters to the RGManager instance. The RGManager subsequently forwards

the method invocation notification and associated parameters to the associated Monitoring-

DataDispatcher instance. The MonitoringDataDispatcher class is responsible for dispatching

method invocation events to the respective MonitoringDataHandler instances, which are in

charge of managing each component method. Thus, upon receiving a method invocation

event, a MonitoringDataDispatcher instance first determines the particular MonitoringData-

Handler instance responsible for managing the particular method invoked. It subsequently

forwards the method invocation event and associated parameters to the identified Monitor-

ingDataHandler instance, for further processing.

In the current implementation, MonitoringDataHandler instances are responsible for using
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method invocation and method return events for calculating incoming workloads, average

response times and throughputs for their respective managed method. Thus, each time a

MonitoringDataHandler receives a method invocation event, it increments a method invo-

cation counter. This counter is used to calculate the workload, average response time and

throughput of the managed method, over a certain period. The end of each such period is

signalled to the MonitoringDataHandler by an associated EndPeriodNotifier instance. The

EndPeriodNotifier class is an extension of the java.util.TimerTask class, which can be sched-

uled to repeatedly perform certain specified tasks at regular time intervals. In AQuA J2EE, an

EndPeriodNotifier is scheduled to regularly notify an associated MonitoringDataHandler of

when to calculate the performance values for its managed method.

Once the method invocation event is processed by AQuA J2EE, the JBoss LogInterceptor for-

wards the method invocation through the container interceptor chain. At the end of this chain,

an instance of the targeted EJB component handles the method request and then returns, pos-

sibly also sending a response value. Method return event are handled similarly to method

invocation events. Namely, the JBoss LogInterceptor intercepts the method response and sig-

nals the event to the associated RGManager instance. The response event is forwarded in a

similar manner through the management framework’s instances, as in the case of method in-

vocation events. An additional piece of information, the method response time, is sent in this

case as an extra parameter along with the method completion event. This value is used by

the MonitoringDataHandler instance to calculate the average response time of the managed

method, over the current time interval. Once the method completion event is processed, the

JBoss container returns the method response to the initiating client.
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Figure 4.12: UML sequence diagram for
monitoring data dispatching in AQuA J2EE
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CHAPTER

FIVE

Experimental Work: Tests and Results

Chapter Summary

This chapter presents the thesis experimental work. Two main goals were pursued for

validating the thesis contributions. First was to exemplify cases in which the redundancy-

based management solution would benefit application performance. The second goal

was to show how the AQuA management framework can be employed to implement the

redundancy-based solution and automatically optimise system performance.

Two practical example applications were tested towards attaining the first goal. Tests were

performed on the two examples under various dynamically changing execution environ-

ments. Obtained results indicated how different redundant components were optimal in

different execution contexts. Performance values measured during the tests clearly showed

the demand for dynamic system adaptations. This proved the applicability and potential

benefits of the redundancy-based optimisation solution in the tested scenarios.

The AQuA J2EE framework prototype was employed for accomplishing the second ex-

perimental goal. AQuA J2EE’s management capabilities were tested for automatically

optimising one of the example applications. In this scenario, the managed application

was automatically adapted to dynamic workload variations in its execution environment.

AQuA J2EE dynamically collected monitoring data, detected workload variations and de-

cided to adapt the application, based on a clearly specified set of decision policies. Redundant

components were automatically swapped in effect, without interrupting system execution.

The measured performance of the automatically optimised application proved superior to the

results obtained when the application was not adapted. In addition, AQuA J2EE’s learning

mechanism was tested on collected monitoring data. Preliminary test results validated the

learning algorithm’s ability to group and merge similar data samples into clusters of inferred

information.
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Goals of this chapter:

• Two practical example scenarios were identified and proved to benefit from the

redundancy-based optimisation solution. In the first example, two redundant compo-

nents alternately yielded optimal response times depending on the available network

bandwidth. The second example sowed how two redundant components were optimal

with respect to memory usage depending on the incoming workload.

• The AQuA J2EE prototype was successfully tested to automatically adapt and optimise

a sample software system, without requiring human intervention

• Preliminary test results proved the ability of AQuA J2EE’s learning function to group

and merge similar monitoring data into clusters of information

5.1 Response Time Variations with

Network Load Scenario

An example application was implemented for the EJB technology1 to show the potential ben-

efits of a redundancy-based optimisation solution. The purpose of this example is to show

how different redundant components, differing in their implementation strategies, can alter-

nately yield optimal performance under different execution contexts. Tests performed on this

example application showed how the performance of two different redundant components

changes with variations in their execution environment [30]. Namely, obtained results in-

dicate how the redundant components’ response times vary with changes in their available

network resources. Conforming to these results, each redundant component is optimal in a

different range of environmental conditions. Therefore, optimal performance will be obtained

if the two redundant components were alternately used as the boundary between the two ex-

ecution contexts was dynamically crossed. Further examples are available from related work,

in the area of component hot-swapping for performance optimisation purposes (e.g. [3], [93],

or [101]).

The sample application was implemented so as to make use of the component redundancy

concept. As such, two different component implementations were provided to supply the

same functionality, while being optimised for different execution contexts. The functionality

provided was to repeatedly retrieve information from a remote database (DB). The two redun-

dant components differed at the design level, as depicted in Figure 5.1. The first redundant

component design involves a single Stateless Session EJB, which implements the entire re-

quired functionality. This is achieved by using SQL code for directly accessing the DB. Thus,

a separate SQL call is made to the DB each time information is requested from this redun-

dant component. The first redundant component is referred to as the session only variant. In

the second redundant component design, a session facade strategy is used to implement the

requested functionality. Namely, a Stateless Session EJB uses an Entity EJB as means of inter-

acting with the DB. In this case, the Entity EJB acts as a local cache for data in the remote DB.

Consequently, data is only retrieved from the remote DB once, at the beginning of each client

session, and is then readily available from the local Entity EJB instance. The second redundant

1Sun Microsystem’s J2EE-Enterprise JavaBeans Technology: java.sun.com/products/ejb
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component is referred to as the session facade variant. A client Stateless Session EJB is used for

calling the currently active redundant component, repeatedly requesting information.

The testing platform for the example application is depicted in Figure 5.1. Three distributed

stations were involved, connected by an Ethernet LAN, as follows. The EJB sample appli-

cation was deployed on an IBM WebSphere application server, running Windows2000 on an

Intel Pentium4, with 1.6GHz CPU and 512 MB RAM. The DB2 relational DB was used, in-

stalled on a platform with Windows2000, Intel Pentium 4 processor, 1.6 GHz CPU and 256 MB

RAM. A third machine was used for generating traffic and loading the network link to the

remote DB, to various degrees. The Tfgen traffic generator tool2 was used for this purpose.

The three machines were connected through a switched 100 Mbps Ethernet LAN, completely

separated from other traffic.

 

Node 1

Application Server (IBM WebSphere)

Session façade variant

Stateless Session bean only variant

Client
Session Bean 

Session Bean
for direct DB access
(contains SQL code)

Session Bean
the façade

Entity Bean 
encapsulates persistent data

Node 2

DB2
Relational 
Database

Node 3

Tfgen
(traffic generator)

Switch

Generating traffic 
to Node 2

Node 1 Node 1

Application Server (IBM WebSphere)

Session façade variant

Stateless Session bean only variant

Client
Session Bean 

Session Bean
for direct DB access
(contains SQL code)

Session Bean
the façade

Entity Bean 
encapsulates persistent data

Node 2

DB2
Relational 
Database

Node 3

Tfgen
(traffic generator)

Switch

Generating traffic 
to Node 2

Node 1

Application Server (IBM WebSphere)

Session façade variant

Stateless Session bean only variant

Client
Session Bean 
Client
Session Bean 

Session Bean
for direct DB access
(contains SQL code)

Session Bean
the façade

Entity Bean 
encapsulates persistent data

Node 2

DB2
Relational 
Database

Node 3

Tfgen
(traffic generator)

Switch

Generating traffic 
to Node 2

Node 1

Figure 5.1: testing platform for example EJB application with two redundant
components

The response delays of each redundant component were repeatedly measured, in different en-

vironmental conditions and for various usage patterns. Variations in the environmental condi-

tions were caused by changes in the amount of available bandwidth resources on the network

link to the remote DB. Usage patterns variations were caused by changes in the number of

information-retrieval requests per client transaction. Measured performance values indicated

certain performance characteristics for the two redundant components, as follows. When the

network link to the DB was lightly loaded, smaller delays were experienced in the session only

variant than in the session facade variant. This situation occurred regardless of the number of

repetitive information-retrieval requests per client transaction. Namely, cases for 1, 10, 100

and 1000 read requests per client transaction were tested, with similar outcomes. This result

is accounted for by the overheads incurred by the session facade variant, because of its extra

Entity EJB management and inter-EJB communication costs. Nonetheless, increasing the load

on the network link to the remote DB had a significant impact on the performance of the ses-

sion only approach. On the contrary, increased network loads hardly affected the session facade

variant. The reason is that the session only variant needs to access the DB for each individual

2TFGen traffic generator: www.st.rim.or.jp/ yumo/pub/tfgen.html
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information-retrieval request. In contrast, the session facade variant requires a single DB access

per client transaction, for the first information-retrieval request in each transaction. The rea-

son is that data is cached in the local Entity Bean instance after the first DB read operation.

Locally cached data is subsequently retrieved from the Entity EJB instance for succeeding re-

quests. Based on these facts, under certain environmental conditions, the session only design

choice produces higher delays than the session facade variant does. Such environmental condi-

tions are characterised by increased numbers of information-retrieval requests and significant

network loads, such as over 90% loads. Using an Entity EJB to locally represent remote DB

information becomes in these circumstances the optimal choice. The optimal redundant com-

ponent cross-point between the two implementations is reached when the inter-component

communication and CPU overhead in the session facade variant is exceeded by the repeated

remote DB access overhead in the session only variant.

Figure 5.2 shows the response time curves corresponding to the two redundant components,

for various network loads, when 1000 information-retrieval requests were made per client

transaction. For obtaining these curves, request response times were repeatedly measured for

different network loads. The average response time value for each network load level was

then calculated and represented on the response-time graph, as shown in Figure 5.2.

The obtained test results indicate that an informed alternation of the two redundant com-

ponents, each one optimised for a different execution context, would provide better overall

performance than either component alone could provide.
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Figure 5.2: response-time variation with network load
for two redundant components - example scenario

Even though simple, this example provides a valid demonstration of how the redundancy-
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based approach can be used to dynamically adapt and optimise systems.

The problem addressed concerns the difficulty of devising a single component that exhibits

optimal characteristics in all possible running contexts. The optimal component implementa-

tion and configuration highly depends on the component’s execution environment, which can

frequently change. Therefore, the redundancy-based optimisation approach provides a flexi-

ble means of utilising the optimal component implementation and configuration under each

distinctive execution environment. The redundant component behaviours optimal in differ-

ent execution contexts are pre-coded and made readily available for the system’s use, during

runtime. Each redundant component is used in the specific execution context it was optimised

for. Due to significant system complexity, it is highly desirable that the redundant component

selection process is performed by an automatic system manager, without the need for human

intervention. Consequently, an important factor in this solution becomes the adaptation logic

for automatically determining the optimal redundant component and optimal combinations

of redundant components in each running context.

5.2 Memory Consumption Variations with

Incoming Workloads Scenario

5.2.1 Duke’s Bank Sample J2EE Application

A second example application was obtained and tested to validate the thesis research. The

purpose of this second example is twofold. First, the application used provides a second

example in which different redundant components alternately provide optimal performance

under different execution contexts. Redundant components in this example differ at their con-

figuration level. This is different from the application presented in the previous section, in

which redundant components differed at the implementation level. Second, the example was

used to test and prove the applicability of the AQuA framework and its prototype implemen-

tation for dynamically optimising system performance.

An enterprise banking application, Duke’s Bank 3, was used to demonstrate AQuA J2EE’s

performance management capabilities. Duke’s Bank is a sample J2EE application from Sun

Microsystems. It provides functionality that allows customers to perform banking operations

online. Such operations include accessing account histories and performing banking transac-

tions. Administrators can also use Duke’s Bank application to manage customer records and

accounts.

Duke’s Bank is designed as a typical three-tier enterprise application, with web, application

and DB tiers. Figure 5.3 provides a high-level view of Duke’s Bank’s architecture, depicting

the main J2EE components involved and the way they interact with external clients and with

the DB. Duke’s Bank comprises three main business entities: the customer, the account and

the banking transaction. Each of these business entities is represented by a separate Entity EJB

in the application tier and by a corresponding table in the relational DB. Namely, information

on customers, accounts and banking transactions is persisted in a DB and accessed via Entity

3Duke’s Bank sample J2EE application from Sun Microsystems:
java.sun.com/j2ee/tutorial/1 3-fcs/doc/Ebank.html
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EJBs with Bean-Managed Persistence (BMP). Stateful Session EJBs are used to handle client

sessions in Duke’s Bank. The EJB components in the application tier are in turn accessed via

web components in the presentation tier. Web components employed include JSP files and

servlets.

Duke’s Bank is designed so that all Entity EJBs are accessed via Stateful Session EJBs (Figure

5.3). Conforming to the EJB specification, instances of Stateful Session EJBs maintain their state

for the entire duration of the client session accessing them. Consequently, in Duke’s Bank, the

Entity bean instances must also be maintained available for the entire duration of the client

sessions using them. This implementation detail had an important role in the outcome of the

performed test cases and presented adaptation scenarios.

Duke’s Bank application and the way it was modified for the performed tests are presented in

more detail in Appendix C.
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Figure 5.3: high-level architecture of Duke’s Bank application

In the original Duke’s Bank distribution, Entity beans were implemented so as to use Bean

Managed Persistence (BMP). BMP means that the bean implementation is responsible for man-

aging the bean’s state, during runtime. This is usually achieved by introducing SQL state-

ments in the bean code, for managing connections to the DB and performing the necessary

reading and writing DB operations. An alternative possibility for handling bean persistence

is to use Container Managed Persistence (CMP). When CMP is used, the EJB container is re-
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sponsible for managing the Entity bean’s state and its corresponding persistent representation

in the DB. In this case, the EJB provider needs to specify the bean attributes that are part of the

EJB’s persistent state. Subsequently, the EJB deployer must map the EJB attributes to the corre-

sponding fields in the persistence storage used. Relational DBs are commonly used to provide

persistence support for Entity beans. In such cases, an Entity bean is typically mapped to a DB

table and the bean’s attributes to corresponding fields in that table.

The Entity beans in the original Duke’s Bank distribution were modified so as to use CMP

instead of the original BMP option. The CMP option grants the container more control over

the managed Entity bean instances. Consequently, using CMP simplifies the container-level

implementation of the dynamic component-swapping functionality. Undoubtedly, it is also

possible to implement the component-swapping facility so as to support runtime replacement

of Entity beans with BMP. However, a fully-functional component replacement function that

worked for all EJB types and configurations was out of the thesis scope. In addition, the latest

J2EE implementation releases from most providers (e.g. starting with JBoss 3.2.x) supply CMP

capabilities that are typically more robust and provide better performance than most custom

BMP implementations could. In other words, building a BMP Entity bean that is better in cer-

tain respects than its equivalent CMP version would prove in most cases a highly-expensive

and risky task. As such, BMP usage is generally no longer encouraged.

5.2.2 Database Settings for Duke’s Bank

The MySQL4 relational DB was selected as the persistence storage for Duke’s Bank. Separate

tables were created in the DB to store data for each of the three main business entities in the

bank: customer, account and banking transaction (Appendix C). In turn, Duke’s Bank uses

three Entity beans to represent these business elements at the application level. The DB tables

were populated with initial testing data as follows. The customers table was populated

with the details of 1000 different customers. Each customer had one banking account opened

and stored in the accounts table. For each opened banking account, 100 transactions were

recorded in the transactions table.

Considering this data, it can be deducted that for each user that runs the testing scenario,

the server needs to use 1 Customer, 1 Account and 100 Transaction Entity bean instances.

These instances are stored in the corresponding container caches of the Customer, Account

and Transaction Entity EJBs, respectively. For example, the Account Entity bean instances are

placed in the cache of the container that manages the Account Entity EJB. New instances need

to be put in the cache for each new user accessing the application. However, for a certain

period, instances employed by previous users remain in the cache even after no longer used

or needed. The maximum-bean-age configuration of a cache dictates how fast unused

instances are to be removed from the cache (Appendix B.1). Thus, this configuration critically

influences the number of EJB instances stored in a cache at any moment in time.

4MySQL opensource database: www.mysql.com
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5.2.3 JBoss Caching Configurations

JBoss5 was used as the J2EE application server for deploying and testing Duke’s Bank. Vari-

ous caching configurations were used during the performed tests to optimise the application

performance under different execution environments. This subsection describes the way the

EJB instance caching works in JBoss. In addition, some of the possible caching configurations

relevant for the presented testing scenarios are also explained. More details on this topic are

available from Appendix B.

In JBoss, an instance cache is a repository that stores instances of stateful EJBs between subse-

quent client requests, as well as whilst handling client requests. Stateful EJB instances main-

tain their state for longer than one client call and can be Stateful Session beans or Entity beans

(section 2.4.2). In short, Stateful Session beans maintain their state between subsequent client

calls, for the entire duration of a client session. Once the client session terminates, the instance

state is deleted. Entity beans additionally maintain state between subsequent client sessions.

Any stateful EJB instance has a unique identity associated with it. Clients use this identity for

pointing out the precise instance they want to use. Stateful Session bean instances are iden-

tified by their client session ID. Entity bean instances are identified by a unique key attribute

value.

When certain stateful EJB instances are being regularly used, the JBoss container maintains

the instances in a cache for resource-saving considerations. In addition, JBoss also requires

instances of stateful beans to be present in the cache for the entire duration of their use. This

means that a JBoss instance cache must be large enough to accommodate all EJB statefull in-

stances required for use at any one time. It also means that a statefull EJB instance cannot be

removed from the cache while in use. This is a particular caching strategy adopted by JBoss

and may not be valid for other J2EE servers.

The EJB caching configurations relevant for the experimental work are summarised below.

• min-capacity: the minimum number of EJB instances that should be available in the

cache

• max-capacity: the maximum number of EJB instances that can be stored in the cache. If

the cache is full and yet more instances need to be added for use, the system will suffer

performance degradations, or no longer function

• max-bean-age: the maximum period for which a bean can be inactive before being pas-

sivated by the overager process and removed from the cache. When an EJB instance is

passivated, its state is saved into the persistence storage used (e.g., a relational DB, or a

file system). The freed instance is subsequently returned to the JBoss container instance

pool.

• overager-period: the period between subsequent runs of the overager task. The purpose

of the overager task is to see if the cache contains bean instances with an age greater than

the max-bean-age element value. Any beans meeting this criterion will be passivated.

In order to call the EJB components’ functionalities, clients must first obtain an instance of the

EJB component they want to use (subsection 2.4.3). In JBoss, clients obtain instances of an EJB

component by sending a request to the JBoss container that manages that component. When a

5JBoss opensource J2EE application server: www.jboss.org
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statefull EJB instance is requested, the container performs the following operations in order to

acquire and return the instance. If the required EJB instance is available from the cache, then it

can be directly used from there. Otherwise, an EJB instance is obtained from the instance pool

first. If the pool is empty, a new EJB instance is created. Instances stored in the instance pool

have no identity associated with them and thus can be used for any client. Once obtained,

the EJB instance is placed in the cache and a unique identity is associated with it. Addition-

ally, in the case of Entity beans or passivated Stateful Session beans, the current state of the

required EJB instance is brought from the persistence storage and associated with the instance.

A reference to the statefull EJB is finally returned to the requesting client. The EJB reference

can be used to call on the EJB’s methods. The EJB instance is subsequently maintained in the

cache, so as to conform to the JBoss container caching configurations. As such, if a statefull

EJB instance is inactive for a certain period, equalling the maximum-bean-age cache setting,

then the container passivates the instance. This involves removing the instance from the cache

and saving its state in a temporary storage location.

A statefull EJB configured with a maximum bean age that is insufficient for its running con-

ditions will not function properly on JBoss. This is because the container will try to passivate

the instance while individual clients might still need to use it as part of their sessions. This

problem occurs for example for Stateful Session beans, or Entity beans used by Stateful Ses-

sion beans. The reason is that in such cases, EJB instances may be locked as part of a client

session. Thus, they cannot be passivated and deleted from the instance cache. Heavy work-

loads or limited resources can cause EJB instances to stay idle for long intervals. The EJB

instances can be locked waiting for responses from other EJBs to be returned, or for needed

resources to become available. Consequently, the EJB container will detect the instances’ in-

activity, consider the instances are no longer needed and try to passivate them. However, as

EJB instances cannot be passivated when they are locked in a running session, resources are

wasted trying to perform an illegal activity. This in turn induces further delays in process-

ing client requests, finally causing transactions to expire and be rolled-back. Performance can

drop dramatically, sometimes even causing the application to stop functioning properly. These

considerations may determine deployers to configure EJB caches with long maximum bean-

age values. However, under light workloads, client sessions may take much shorter times

to execute. In such cases, the EJB instances’ lack of activity would correctly indicate that the

instances are no longer needed and could be safely passivated to save memory resources. At

application deployment time, the exact runtime loads and application usage scenarios are not

known. Furthermore, such running conditions can repeatedly and significantly change over

time, meaning that no single deployment configuration can be optimal at all times. Consid-

ering this, a number of redundant components were developed for the thesis experimental

work. Each redundant component was optimised for different system loading conditions.

5.2.4 Redundant Components for Duke’s Bank

Several redundant components were built and used for enabling Duke’s Bank to adapt to

changes in its running environment. The redundant components differed in their deploy-

ment configurations, which instructed JBoss containers on how to manage instances of the

EJB components at runtime. More precisely, the max-bean-age parameter was tuned for

each instance cache of each redundant EJB, so as to be optimal in certain system-load condi-
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tions. The max-bean-age parameter dictates the amount of time an inactive EJB instance

is kept in a cache before being passivated. Passivating an EJB instance involves saving its state

in a persistent storage and removing the instance form the instance cache. This consequently

frees the caching resources used to manage the passivated EJB instances.

The max-bean-age setting is used to indicate the time to wait before concluding that an

inactive component is no longer being used. At this point, the EJB instance can safely be passi-

vated so as to save system resources. Nonetheless, in a highly loaded system, an EJB instance

can remain inactive for long periods, even while actually handling client requests. This can

happen as the EJB instance may be blocked waiting for responses from other EJB instances, or

for needed resources to become available. In such cases, if the EJB instance remains inactive

for longer than its max-bean-age, JBoss will rightly attempt to passivate it. However, as the

EJB instance is being locked in a client transaction or session, the passivation operation will

fail. Additional resources are consumed while JBoss attempts to perform illegal operations,

further increasing delays and worsening resource contention. Performance consequently de-

teriorates until transactions start to expire and roll-back. Exceptions are consequently thrown

causing system availability to degrade. To avoid such undesirable situations, application de-

ployers commonly configure EJB instance caches with extended maximum-bean-ages, which

will most certainly suffice in eventual heavy-load scenarios. As an example, the standard

JBoss configuration for the max-bean-age parameter is 600 seconds. However, when the

system is lightly loaded, extended max-bean-age configurations mean that EJB instances

are kept in the cache for long periods, even if typically no longer reused or needed by the

application. Memory resources are being inefficiently used in effect. This is a clear example

scenario where an application’s optimal configuration directly depends on the application’s

execution context.

Ideally, the managing application server (e.g. JBoss) would simply ’know’ how to differentiate

between the two scenarios and be capable of deciding to passivate EJB instances only when

’really’ inactive and no longer needed. For achieving this goal, the application should be dy-

namically reconfigured when its execution environment changed. AQuA J2EE provides the

means to automatically execute such adaptive management operations, at runtime. Redun-

dant components with different caching configurations are used to support the application’s

dynamic optimisation. The policy-based detection, evaluation and decision functionalities al-

low system managers to specify, in a platform-independent manner, the difference between

the various execution scenarios and the possible corrective actions to be taken in each situa-

tion.

Based on these considerations, two redundant components were employed in the presented

tests on Duke’s Bank. Namely, redundant components were used for the Entity EJBs employed

in the tested usage scenarios. Each redundant component was configured so as to be optimal

under a different system load range. The redundant components were built to differ in their

instance caching configurations. Namely, the caches were configured with 10 second and 500

second maximum-bean-ages. These redundant components are referred to as the 10-bean-age

component and the 500-bean-age component, respectively.

More than the two presented redundant components were actually developed and tested as

part of Duke’s Bank. Nonetheless, for the targeted range of running conditions the two pre-

sented component variants were determined to suffice, for providing close to optimal perfor-

mance at all times. Conforming to the performed tests, using more than these two variants

would have produced insignificant additional gains in performance, at the cost of inducing
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unnecessary adaptation overheads. Redundant components such as the ones presented are

created at deployment time, when the deployment platform and expected running conditions

are known. Further redundant components can also be created and added during system run-

time, in order to handle unexpected execution conditions. For example, additional redundant

components can be created in the same manner, to be optimal under system loads larger than

the ones used in the tests presented.

The adaptation strategy used to optimise Duke’s Bank in the presented test case was based

on dynamically tuning the caching configurations of the application’s Entity beans, according

to changes in the system load. The maximum bean-age of the cache was the principal tuning

parameter for the performance optimisation. The used adaptation strategy was derived from

knowledge on the operation of the JBoss containers and their provided services (e.g. EJB life-

cycle management, instance pooling and caching). Assumptions were made on the way the

various JBoss container configurations could be tuned, so as to optimise system performance

under certain execution contexts. These assumptions were then tested and verified based on

the obtained results. Test results were subsequently used to determine and validate the par-

ticular caching configurations that were optimal under each system loading conditions.

The optimum maximum bean-age value is influenced by several factors. First, the system load

highly influences the EJBs’ response times and thus the correct interpretation of idle EJB pe-

riods. Namely, the incoming load and the amounts of available resources dictate the length

of client sessions. They also determine possible bean inactivity periods within these sessions.

Bean instances are being locked for the entire duration of the session that uses them. Hence,

the maximum bean-age of a cache should be larger than the apparent inactivity periods dur-

ing which bean instances are being locked. Otherwise, the container will unsuccessfully try to

passivate and remove locked instances.

Another important aspect to consider when tuning redundant component configurations is

the application’s usage patterns. Usage patterns, or work mixes, indicate the frequency at

which the same clients return to access an application, in a way that requires the same bean

instances to be used. This aspect dictates whether it is worth maintaining EJB instances in the

cache, after the session that uses them terminates. The application’s business logic may have a

high influence on this aspect. Thus, in a banking application, such as Duke’s Bank, users rarely

return to manage their bank accounts repeatedly, at short time intervals. In addition, each in-

dividual user generally has their own banking accounts and transactions, which should never

really be accessed by other users. This implies that the Entity EJB instances required by one

individual user will not be needed for handling requests from other users. Hence, in this case,

Entity bean instances should be removed from the cache as soon as possible, once the client

session they were involved in terminates. However, no attempts should be made to remove

bean instances from the cache while still in use by a client session. Based on these considera-

tions, the redundant components built for the presented Duke Bank’s tests were tuned so as

to be optimal under their targeted ranges of system loads. In contrast, in an e-commerce ap-

plication for example, multiple users are commonly accessing the same products, whether for

viewing or purchasing them. Consequently, the Entity bean instances representing these prod-

ucts at the EJB application level are being reused across multiple users. In such cases, it may

indeed be beneficial to maintain certain Entity bean instances in the cache for more than the

duration of a single client session. The particular characteristics of each managed application

are typically known to system administrators. Thus, administrators can accordingly configure

the redundant components used and the associated application adaptation strategies.
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The optimal JBoss configuration values also depend on the general characteristics of the busi-

ness data stored in the persistent DB. Such characteristics include the amounts of data to be

processed, as well as the relations between the various data items. In the performed tests on

Duke’s Bank application example, the average number of banking accounts per customer and

the common number of banking transactions per customer account had an important influ-

ence on the optimal redundant component configurations. Configurations impacted by these

aspects included workload cross-points (or thresholds) and caching parameter values.

5.2.5 Test Platform

Three stations were employed for installing the J2EE application and performing the tests. One

station was used for running Duke’s Bank application on JBoss, a second for running a rela-

tional DB and a third for simulating client activity on the tested system. JBoss 3.2.5 was used

as the J2EE application server, running on a Microsoft Windows Server 2003 Enterprise Edi-

tion platform, with Intel Pentium III at 860MHz and 512 MB of RAM. The MySQL relational

DB was selected as persistence support for Duke’s Bank application. The DB was run on Mi-

crosoft Windows Server 2003 Enterprise Edition, on an Intel Pentium III processor at 866MHz

and 128 MB of RAM. The OpenSTA 6 load-generating tool was used to simulate clients for

the tested application. OpenSTA was installed on a Windows Server 2003 Enterprise Edition

station, Intel Pentium III at 701 MHz and 1 GB of RAM. The three stations were connected via

an Ethernet LAN at 100Mbps. The GCViewer7 tool was used to visualise JVM-level memory

consumption data, for the Java process which ran the J2EE application and JBoss server.

Figure 5.4: testing platform for Duke’s Bank

5.2.6 Test Scenarios and Procedures

Duke’s Bank was tested under two different workload conditions, starting with a low work-

load of 15 concurrent users and continuing with an increased workload of 60 concurrent users.

After a certain period, the workload was decreased back to the initial lower workload of 15

users. The OpenSTA load generator was used to simulate the varying incoming workloads

and user behaviour on the tested J2EE application. Thus, OpenSTA was configured to gener-

ate different numbers of concurrent users accessing Duke’s Bank application. Each simulated

user interacted with Duke’s Bank following a certain well-defined usage scenario. An Open-

STA script was used for specifying the client behaviour to simulate (Appendix D). The usage

6OpenSTA - the Open, Systems Testing Architecture: www.opensta.org
7GCViever - data visualisation tool for JVM-level measurements:

www.tagtraum.com/gcviewer.html
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pattern run by each client involved several operations, as follows. First, the client logs in, lists

all the banking transactions of a selected account and finally logs out, terminating the client

session.

The OpenSTA script defining clients’ behaviour was configured so that each user received a

unique identity (Appendix D). This means that each generated client logged in as a separate

bank customer, with different personal details and banking accounts. In turn, this configura-

tion implies that once a client’s session was completed, the EJB instances used to serve that

client’s requests were no longer needed. At that point, these EJB instances should be promptly

removed from the cache, to free system memory.

Duke’s Bank application was tested in two different scenarios. In one scenario, the automatic

application adaptation was not used during runtime. This means that AQuA J2EE was not

integrated with JBoss for the performed test, during this first scenario. In the second scenario,

the automatic application adaptation capabilities of AQuA J2EE were employed to optimise

Duke’s Bank to changes in its running environment.

5.2.7 Test Results

In the testing scenario that used AQuA J2EE, the application was initially configured to

run the 10-bean-age variant, as optimal for the initial low workload. When the workload

increased, the management framework automatically detected the load variation, determined

that the 500-bean-age variant was the optimal one in the current environment and decided

to activate it. Consequently, the initial 10-bean-age variant was dynamically swapped

with the new 500-bean-age variant. The system adaptation was triggered and carried out

automatically, without any human intervention.

During the interval immediately following this adaptation operation, the special-purpose

policies in the adaptation decision module prevented further adaptations from being per-

formed, so as to avoid oscillating adaptations (subsection 4.6.3). Such a situation would have

occurred in this case due to the decreased workload detected on the adapted components,

during the actual component-swapping process. The workload decrease was caused in this

case by the component activation process, which blocked requests on Redundancy Groups

(RGs) while swapping their redundant components. Nonetheless, the detection module is un-

aware of this aspect when interpreting monitored data. It consequently alerts the evaluation

module, which determines the optimal redundant component in the apparent low workload

context. Activating this recommended redundant component at this point would constitute

undesirable management behaviour. The reason is that the application adaptation would

actually be based on monitoring data collected during another adaptation process which is

optimising the application for the real, increased workloads. The current implementation of

the adaptation decision policies prevents this incorrect behaviour by not allowing adaptation

operations to be performed within a certain interval after a system adaptation was completed.

During the AQuA J2EE-enabled testing scenario, when the workload later decreased back to

a low level, the application was automatically adapted again, in a similar manner, so as to

reuse the initial 10-bean-age variant.

In the scenario in which the application was not adapted, the 500-bean-age variant was used

throughout the test, workload fluctuations ignored. Results obtained during the two tested

scenarios are presented in Figure 5.5.
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Figure 5.5: adaptation impact on memory usage

Figure 5.6 summarizes the memory-usage characteristics of the two redundant components

under the low and increased workload conditions. The results indicate that the 10-bean-age

component consumes much less memory than the 500-bean-age component, when executed

in low workload conditions. Nonetheless, the 10-bean-age component cannot be used under

high workloads. On the contrary, the 500-bean-age variant can be used under both workload

ranges, but is suboptimal when executed in low workload conditions. The impact the two

redundant components had on the system memory usage is discussed in more detail below.
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Figure 5.6: different redundant components are optimal under different work-
loads: the 10-bean-age component is optimal under low workloads but cannot
be used under increased workloads; the 500-bean-age component can be used
under both workload ranges but is sub-optimal under low workloads

When using the 10-bean-age component and testing the application under the low 15 user

load, the maximum number of instances reached in each cache was very close to the actual

number of required instances, which is 15 Customer, 15 Account and 1500 Transaction Entity

EJB instances. However, this was no longer the case in the non-optimised application, when
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the 500-bean-age component was used under the same low 15 user workload. In this case,

the maximum number of EJB instances in each cache was considerably increased, reaching up

to five or six times the number of needed Customer, Account and Transaction Entity EJB in-

stances. The number of EJB instances in the JBoss’ container caches directly impacted system

memory usage, as confirmed by the obtained test results.

Figure 5.5 shows the memory usage levels recorded during the two separate test scenarios.

Results clearly indicate the benefits of the application adaptation on the system memory us-

age. Under low system loads, the non-adapted application consumed more than 100% more

memory (i.e. 100MB more memory) than the adapted application. The measured memory

consumption represents the memory usage of the entire web and application tiers of the en-

terprise system. This includes both Duke’s Bank application and the JBoss server. Thus, the

memory usage gains are reported with respect to the memory consumption of the entire en-

terprise system (DB excluded).

As previously explained, the reported gains were obtained based on the way the different

caching configurations work on JBoss. As such, when using the 10-bean-age component and

testing the application under a low load, the maximum number of instances reached in each

EJB cache was close to the number actually needed for handling client demands. However,

when using the 500-bean-age component under the same load, the maximum number of in-

stances in each cache was significantly increased, as EJB instances were being maintained in

the cache for long periods, even after no longer used. In a real banking application, each cus-

tomer has their own banking account, which they normally manage once a day, at most. Thus,

instances cached for a certain customer are never actually used again before passivation. As

a result, under low system loads, the memory consumption caused by keeping the caches at

increased levels, as in case of the 500-bean-age variant, do not bring any visible performance

benefits.

In order for the system to be able to run under the two tested environments, sufficient sys-

tem resources needed to be available to accommodate both low and increased workloads.

For this reason, the memory gains obtained by adapting the application to low incoming

workloads would not directly improve the application’s performance characteristics (i.e. re-

sponse time and throughput). However, a realistic scenario in which such gains would be

beneficial is that of a cluster of servers on which multiple applications are being run; applica-

tions are dynamically being ported between the available servers in the cluster, so as to cope

with fluctuations in the incoming workloads, optimise cluster resource usage, or mask server

crashes (e.g. [96]). In this scenario, saving memory on one of the cluster servers would allow

for a memory-consuming application to be ported on that server. This scenario was simu-

lated in the executed tests by starting a memory-consuming application whenever sufficient

memory became available. The memory-consuming application was simulated by starting

a java application and setting its JVM memory allocation parameters to the desired mem-

ory consumption value (e.g. java resource consumers.MemoryConsumerApp

-Xms150m -Xmx150m). This application was set to consume about 150MB of memory.

In this scenario, the memory saving benefits could be observed at the performance level of

Duke’s Bank. Namely, when Duke’s Bank was adapted to use the 10-bean-age variant un-

der low user loads, running the memory-consuming application in parallel did not impact on

Duke’s Bank performance, as sufficient memory was available. However, attempting to start

the memory-consuming application when the 500-bean-age variant was used resulted in out-

of-memory exceptions being raised, causing the JBoss server to crash and thus dramatically
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affecting system availability. This shows how adapting Duke’s Bank can optimise memory

usage in a clustered system with limited available memory. When the tested system was up-

graded so as to avail of sufficient memory for the correct functioning of both the non-optimised

Duke’s Bank (i.e. using the 500-bean-age variant) as well as of the memory-consuming appli-

cation, availability issues were solved, but response times of Duke’s Bank were impacted.

Figure 5.7-a shows the response times measured in this final scenario for the two redundant

components running under low loads. Results indicate that when the 500-bean-age variant is

run, certain users experience response times of up to 20% (i.e. 4 seconds) bigger than when

the 10-bean-age variant was used.

Response times measured during the entire duration of the two testing scenarios are shown

in Figure 5.7-b. The original JBoss distribution was used when the application adaptation

was not used. Thus, the presented results indicate that during normal system execution

AQuA J2EE induces no visible overheads on application performance. Performance over-

heads occur only during the actual application adaptation process. This is reflected in the

two spikes that appear in the response time values, at the points where the two swapping

operations occurred. As previously discussed, the response time overheads caused by the

component-swapping process are critically dependent on the actual swapping implementa-

tion used and on the particular characteristics of the managed application. These overheads

must generally be considered when evaluating an adaptation operation, to ensure the poten-

tial benefits would outweigh the induced overheads. The impact that the presented solution

has on other system quality attributes, such as reliability, should also be considered.
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Figure 5.7: application adaptation impact on response times - limited memory
availability: a) low workloads b) low and increased workloads

Duke’s Bank example offers a valid case in which no single optimal configuration exists for all

possible system execution environments. The 10-bean-age component is optimal under low

workloads, but cannot be used under heavy loads. The 500-bean-age variant is needed for

increased workloads, but is sub-optimal under low workloads.

5.2.8 Discussion

A few notes are in order for showing the way monitored parameter values should be inter-

preted in the tested scenarios. The discussion is tied to the fact that values of a single parame-

ter often cannot be interpreted completely independently from the values of other parameters.

The reason is that certain parameters may be strongly related, their values influencing each

other. Monitored values of a certain parameter may have different meanings depending on
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the readings obtained from different, related parameters. For example, monitored component-

level workloads can directly influence, as well as be directly influenced by system-level re-

source availability.

In the exemplified Duke’s Bank application, the parameter that ultimately dictates which re-

dundant component is optimal at anyone time is the component response time. This is the

time required for a component to reply to client requests. A component method’s response

time is the key parameter in the tested Duke’s Bank example. The reason is that the response

time provides in this case a decisive indication on the execution context characteristic that

critically influence the component’s evaluation. More precisely, response time provides a di-

rect indication of the current system load and consequently of how a component’s inactivity

should be interpreted. Namely, the inactivity of a cached EJB instance can be interpreted

differently, depending on the system load (subsections 5.2.3 and 5.2.4). In this context, the

’system load’ is used to indicate the system’s resource utilisation for handling client requests.

Thus, the system load directly depends on the available system resources, as well as on the

incoming workload. The system load significantly impacts on the applications’ performance

characteristics, such as response times and throughputs. Specifically, a component generally

yields lower response times and higher throughputs under low system loads than under high

system loads. On the contrary, high component response times typically indicate an increased

system load. This means that a component may be locked in client transactions waiting for

needed software and/or hardware resources to become available. As such, under low system

loads, an EJB instance’s inactivity typically means that the instance is no longer needed and

can be discarded. On the contrary, under high system loads, the same EJB inactivity period

can be caused by the instance being blocked waiting for required resources to become avail-

able. A component’s response times can be used to differentiate between the two cases, as a

direct indication of the current system load. Namely, the response times of the various com-

ponents involved provide a clear indication of the amount of time EJB instances may remain

idle in a cache, waiting for the arrival of responses they need to complete their tasks. More

precisely, higher response times indicate a loaded system, requiring the 500-bean-age variant

to be used. Similarly, decreased response times will indicate a lightly loaded system, allowing

for the optimised 10-bean-age variant to be activated. Hence, analysing current response time

values for deciding which redundant component to use is a viable option.

Alternatively, it is also possible to analyse those system parameters that directly impact re-

sponse time values, such as the incoming workloads and the resource availability. For exam-

ple, if the amount of physical system resources remains constant, and resources are sufficient

so as not to become saturated at any point, then the incoming workload can be successfully

used to evaluate and predict overall system loads and response time fluctuations. This op-

tion was selected for specifying the detection and evaluation policies in the presented tests.

Nonetheless, if resource contention occurred, individual component workloads would cease

to increase with the actual incoming client load on the system. This is because client requests

would be queued (at lower middleware, JVM or OS levels) waiting for resources to be freed.

Consequently, queued client requests would not influence the monitored component work-

loads. In such cases, the combined variations of workloads and system resource usage need

to be considered.

Overall, the purpose of collecting and correctly interpreting runtime monitoring data is the

ability to accurately identify the exact cause of a detected performance problem. Performance

problems are typically caused by the depletion of a limited resource, required for the system’s
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correct functioning. Bottlenecks are consequently formed causing incoming requests to be

queued, thus increasing delays and diminishing throughputs. A correct bottleneck diagnosis

often requires the correlated interpretation of multiple metric values. As previously shown,

workloads have a direct impact on a system’s resource consumption. Thus, measured work-

loads can be used as a direct indication of the system load and a predictor of the system’s

performance fluctuations. Nonetheless, if a bottleneck is formed at the system resource level,

workload variations may no longer reflect the system load, as incoming requests would be

queued and not counted at the monitored component level. A combination of the monitored

workload and available hardware resources, such as CPU, memory and network bandwidth

should be used in this case to get a clearer picture of the current system state. Nonetheless,

monitoring a system’s hardware resources may not always suffice. Software-level configura-

tions can also limit the amounts of software platform resources available to a certain applica-

tion. Such software resources may include the maximum number of accepted transactions on a

web server, the total number of allocated threads or processes, or the permitted number of DB

connections. A bottleneck at this software resource level can not be detected by solely moni-

toring workloads and hardware resources. The reason is that as before, measured workloads

would stop increasing as a result of incoming requests being queued at lower system levels,

waiting for the limited software resources to become available. For this reason, the software

resource limitation would not be sensed at the hardware resource level either. The reason is

that the queued requests would not consume any processing or communication resources at

the hardware level. Thus, in this case, more system metrics should be monitored in order to

detect this type of software resource bottleneck. For example, monitoring samples may be col-

lected from the underlying JVM or OS layers, in order to keep track of the software resources

available at these levels, including the numbers of free threads, processes, or connections.

The presented Duke’s Bank example shows the paramount importance of clearly understand-

ing the way a system’s state is reflected, at different levels, in its various parameter values.

Being able to correctly interpret the available monitoring data and provide viable system di-

agnosis is crucial for specifying and obtaining the desired system adaptation behaviour. Fur-

ther monitored parameters can be added as necessary to provide a more accurate view of the

system state. It is important to note that the devised adaptation strategy and associated redun-

dant components were specifically designed for Duke’s Bank and the JBoss application server.

Thus, an identical performance management strategy and configuration may not produce the

exact same performance benefits for different applications and/or on different platforms.

Another important aspect to discuss in the context of Duke’s Bank example is the way in

which the managerial component-swapping operations impacted on system performance. An

important management factor influencing this aspect is the component-swapping operation.

The current component-swapping implementation is based on a modified version of the com-

ponent hot-deployment facility, provided by the application server (subsection 4.7). The par-

ticular characteristics of this component-swapping solution have a direct and important im-

pact on AQuA J2EE’s management behaviour, as presented over the following paragraphs.

The prototype component-swapping implementation can be updated and improved so as to

minimise induced performance overheads. Nonetheless, an optimised fully-functional com-

ponent hot-swapping implementation was out of the thesis scope.

The current component-swapping implementation in AQuA J2EE imposes blocking new in-

coming requests for the entire duration of the swapping operation. This includes the time

needed to complete executing client requests that were already being handled when the swap-
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ping operation was initiated. In more detail, when an EJB-swapping operation is started, all

requests for creating new EJB instances must be blocked. These requests are delayed for the

entire duration of the EJB-swapping operation. The delayed requests are only allowed to go

through after all the currently running EJB instances have terminated their execution and have

been removed from memory, and only after the actual EJB-swapping operation terminates in-

stalling the new EJB variants.

The delays caused by this approach directly depend on the running application’s characteris-

tics and execution environment. For instance, the incoming workload and the available system

resources directly dictate how long currently handled requests take to execute. This in turn

directly impacts on the time the new incoming requests have to be blocked, waiting for the

EJB-swapping operation to complete. Also important are the type and complexity of the EJBs

used to implement the managed application’s business logic. For example, using the current

component-swapping implementation to replace Stateless Session EJBs will take considerably

less time than when swapping Stateful Session beans. This is because Stateless Session EJB

instances are only used for handling one client request and can be safely deleted afterwards.

Once all stateless instances are deleted, the EJB can safely be swapped for its new redundant

variant. In contrast, Stateful Session bean instances are maintained during the entire duration

of a client session. They are then additionally maintained in the instance cache for a certain pe-

riod. Thus, when statefull beans are used, the delays imposed to new incoming calls (during a

hot-swapping operation) directly depend on the duration of the currently running client ses-

sions. In addition, the delays critically depend on the EJB’s caching configurations. Delays can

consequently range from a few seconds to tens of minutes. Additionally, such delays may not

only occur while swapping Stateful Session EJBs, but also when swapping Stateless Session or

Entity EJBs that are being used by Stateful Session beans. The reason is that these EJBs, even

if not tied to client sessions themselves, are nonetheless locked in running client sessions by

the Stateful Session EJBs using them. This case occurred when swapping Duke’s Bank Entity

beans, which were being used by Stateful Session beans. As such, the use of Stateful Session

beans in an application may induce increased management delays when using AQuA J2EE.

Nonetheless, the use of Stateful Session beans for implementing business logic is not recom-

mended, especially when performance is an important factor8.

Considerable improvements to the current component-swapping technique would be

achieved if new incoming requests were handled by the new redundant components, in par-

allel with older requests being handled by the old redundant components. Once the older

requests finished executing, deprecated redundant components could be removed (e.g. The

JSR 88 from Sun Microsystems: ”J2EE Deployment API Specification”, November 2003, or

[65]).

5.3 Testing the Learning Mechanism

AQuA’s learning mechanism (section 3.13) enables the management framework to infer per-

formance information from the collected monitoring data samples. Inferred information on

the components’ performance characteristics is used to improve AQuA’s management be-

8The BEA Documentation Source, ”Scaling EJB Applications”, 1999:
edocs.bea.com/wle/wle50/tuning/tsejb.htm
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haviour and decision accuracy. The learning function can be executed whether periodically

during runtime (as new monitoring data samples become available), or upon request (pro-

cessing stored monitoring data samples) (section 4.5).

Several initial tests were performed to investigate the expected capabilities of the proposed

learning algorithm. Namely, initial procedures were carried out to test the learning algorithm’s

ability to group and merge similar monitored data samples into clusters of information. The

monitored parameters considered were the incoming workload, memory consumption and

response times. Though, memory usage monitoring capabilities are not currently integrated

with AQuA J2EE. The performed memory consumption measurements were performed us-

ing a special-purpose monitoring tool, the GCViewer. The monitored data samples recorder

by AQuA J2EE consisted of pairs of workload and response time parameter values. Nonethe-

less, as the response time did not play an important role in the tested scenario on Duke’s Bank

application, this parameter was no further considered in the presented tests for the learning

process. The incoming workload was the unique parameter used to represent environmental

conditions in each monitored data sample.

The testing scenario considered was similar to the one used for testing the AQuA J2EE pro-

totype on Duke’s Bank application. More specifically, monitoring data was collected while

Duke’s Bank was running under two different workloads, corresponding to a low user load

(i.e. 1 concurrent user) and a high user load (i.e. 60 concurrent users). The incoming workload

used on Duke’s Bank for testing AQuA’s information inference function is shown in Figure 5.8.

This workload was measured on one of the Duke’s Bank’s component methods (i.e. one of the

MyAccount EJB’s methods). The 500-bean-age redundant component was used during

the performed tests. The recorded workload values ranged between 700 and 800 request per

time interval when under 1 concurrent user load and between 7,000 and 9,000 requests per

time interval for 60 concurrent users.
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The procedure used to merge similar data samples into clusters of information was described
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in sections 3.13 and 4.5. In short, data samples are grouped based on their overall similarity

factor (o SimF), which is calculated based on the samples’ respective parameter values. The

overall similarity factor is used to assign data samples to clusters. It is also used to calculate

the effect the values of a new data sample has on the current information of the existing

clusters. The performed tests show how both these two procedures critically depend on

the no similarity interval parameter. This configuration parameter represents

the maximum difference between two data samples for which the samples are considered

at least somewhat similar (i.e. o SimFgreaterthan0%). If the values of two data samples

differ with more than the no similarity interval value, then the overall similarity

factor between the samples is zero. The performed tests confirmed the learning algorithm’s

capability of generating information clusters based on a series of monitoring data samples.

It also indicated the way cluster formation is influenced by the configuration setting of the

no similarity interval parameter. This section examines this topic starting from

the obtained test results and further discusses the subsequent steps the learning process will

perform based on additional monitoring data and implemented capabilities.

The initial value of the no similarity interval parameter was set to 100. This

value represented the difference between two measured workloads, or numbers of incoming

requests per time interval. The overall similarity factor threshold (i.e. o SimF threshold)

was set to 50%. This meant that a new cluster was created if the overall similarity between

a new data sample and any existing cluster is smaller than the 50% threshold (i.e. o SimF

smaller than 50%). In the tested scenario, this meant that a new cluster was created if a new

workload value differed from the existing cluster centres values with a value greater than

50. The graph in Figure 5.9 indicates the way information was progressively inferred from

available data samples, in this initial configuration scenario. It displays the inferred workload

values in the order in which they were calculated and the clusters generated based on these

values. A total of 36 clusters were created in this case. The final inferred value of each cluster

is the last value that occurs in the graph for a certain cluster ID, before a new cluster ID is

shown. Similarly, the centre of each generated cluster is the first value that appears on the

graph for a certain cluster ID. The end-results of the information-inference process for the

aforementioned settings are shown in Figure 5.10. This graph shows the centre values of

the generated clusters, the corresponding reliability value of each cluster and the associated

cluster information value. A cluster’s reliability factor is determined by the number of data

samples that were allocated to that cluster and that were used to calculate the cluster’s

inferred information. For clarity, the generated clusters are shown in the graph in ascending

order of their centre values. In practice, the order in which clusters are created, or stored

has no effect upon the learning or evaluation processes. Similarly, Figures 5.9 to 5.18 present

the analogous test results obtained for various values of the no similarity interval

parameter, namely for 400, 1000, 4000 and 10000 values respectively.
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no similarity interval = 100; inferred data and clusters generated based on workloads produced by 0, 1 and 60 users

Figure 5.9: inferred workload data values and formed clusters for
a no similarity interval of 100

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

7 2 220 243 1 1 1 4 13 9 36 52 83 108 125 143 113 157 169 149 123 102 95 65 53 15 35 16 19 9 17 10 14 4 2 1

0 600 701 800 3818 4041 6167 7051 7169 7242 7319 7395 7486 7576 7667 7741 7792 7846 7945 8031 8113 8166 8238 8334 8390 8442 8500 8604 8657 8730 8794 8847 8945 9007 9077 9194

top: cluster reliability factor (number of data samples in cluster) 
bottom: cluster center value

fi
n

a
l 
in

fe
rr

e
d

 w
o

rk
lo

a
d

 i
n

fo
rm

a
ti

o
n

 
v

a
lu

e
 i
n

 c
lu

s
te

r

final cluster inferred information for 100 no similarity interval

Figure 5.10: generated clusters - centre values, reliability factors and
final inferred information, for 100 no similarity interval

160



0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

C
lu

st
er

ID
_1

C
lu

st
er

ID
_2

C
lu

st
er

ID
_2

C
lu

st
er

ID
_5

C
lu

st
er

ID
_5

C
lu

st
er

ID
_5

C
lu

st
er

ID
_5

C
lu

st
er

ID
_5

C
lu

st
er

ID
_5

C
lu

st
er

ID
_7

C
lu

st
er

ID
_7

C
lu

st
er

ID
_7

C
lu

st
er

ID
_7

C
lu

st
er

ID
_8

C
lu

st
er

ID
_8

C
lu

st
er

ID
_9

C
lu

st
er

ID
_9

C
lu

st
er

ID
_1

1

C
lu

st
er

ID
_1

1

C
lu

st
er

ID
_1

1

C
lu

st
er

ID
_1

1

C
lu

st
er

ID
_1

1

C
lu

st
er

ID
_1

2

C
lu

st
er

ID
_1

2

C
lu

st
er

ID
_1

2

C
lu

st
er

ID
_1

2

C
lu

st
er

ID
_1

2

C
lu

st
er

ID
_1

2

cluster id

in
fe

rr
ed

 d
at

a 
va

lu
es

 fo
r 

m
ea

su
re

d 
w

or
kl

oa
d

no similarity interval = 400; inferred data and clusters generated based on workloads produced by 0, 1 and 60 users

Figure 5.11: inferred workload data values and formed clusters for
a no similarity interval of 400
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Figure 5.12: generated clusters - centre values, reliability factors and
final inferred information, for 400 no similarity interval
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no similarity interval = 1,000; inferred data and clusters generated based on workloads produced by 0, 1 and 60 users

Figure 5.13: inferred workload data values and formed clusters for
a no similarity interval of 1000
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Figure 5.14: generated clusters - centre values, reliability factors and
final inferred information, for 1000 no similarity interval
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no similarity interval = 4,000; inferred data and clusters generated based on workloads produced by 0, 1 and 60 users

Figure 5.15: inferred workload data values and formed clusters for
a no similarity interval of 4000
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Figure 5.16: generated clusters - centre values, reliability factors and
final inferred information, for 4000 no similarity interval
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no similarity interval = 10,000; inferred data and clusters generated based on workloads produced by 0, 1 and 60 users

Figure 5.17: inferred workload data values and formed clusters for
a no similarity interval of 10000
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Figure 5.18: generated clusters - centre values, reliability factors and
final inferred information, for 10000 no similarity interval

The obtained test results indicate the importance of the no similarity interval value

configuration on the efficiency of the obtained performance information. More precisely, if

the value of this parameter is too small, an unnecessary amount of fine-grained clusters is

created. For example, when a no similarity interval of 100 was set in the presented

test case, multiple clusters were created to represent workload data generated by the same

number of concurrent users. Namely, 60 users generated an incoming workload on the moni-

tored component method of between 7,000 and 9,000 user requests per time interval. More

than 10 clusters were generated in this first configuration case to represent the environmental
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conditions characterised by these workloads. This might be too fine a granularity, since the

recorded workload differences were too small to make a difference in the selected redundant

component. Nonetheless, even though inefficient, using this setting would not have impeded

the evaluation algorithm from selecting the correct optimal redundant component. The

reason is that all the fine-grained clusters covering the increased workload values would

indicate the same optimal redundant component (i.e. the 500-bean-age variant). Thus, for any

fine-grained cluster that the evaluation mechanism would find in the high workload interval,

the same redundant component would be detected as optimal. Nonetheless, this case would

be less efficient, as more clusters would need to be searched for in order to find a similarity

match. In addition, each fine-grained cluster would contain less data samples. Consequently,

the reliability of the inferred information element in each cluster would be decreased. Also, a

possible danger when evaluating a current workload condition would be that the particular

interval of the high workload range would not be covered by existing clusters. For this

reason, accurate clusters would need to collect and process more data samples than clusters

with larger spans, in order to achieve the same information reliability and environmental

conditions coverage.

On the contrary, too large settings of the no similarity interval value may cause

important information to be lost. For example, a step, or an important variation in the

measured data values may be completely lost by the inferred information in case the selected

cluster span covered too large a workload interval. For example, Figures 5.17 and 5.18 show

the results of setting the no similarity interval to 10,000. This value was greater

than the general workload difference recorded when the user load increased from 1 user to 60

users. More specifically, the recorded workload difference between the low system load and

the increased system load was about 6,000, which was smaller than the selected cluster span of

10,000. This caused the generated clustered information to disregard the differences between

the two system loads. Thus, in the particular test case in which the workload increased, the

data collected during the low system load conditions was lost. This behaviour was correct in

principle, except the coarse grain granularity used caused the inferred information to miss

the important workload threshold between the two distinct environments. An optimisation

opportunity given by this environmental conditions change could not be automatically

detected in this case.

Test results also show that the inferred information element value can deviate from the

cluster centre with up to the no similarity interval value. For example, when

the 4,000 value was used for the no similarity interval, the cluster centred on a

workload of 3818 requests per time interval had an associated information element with a

value of 7091 requests per time interval (Figure 5.16). If an important variation occurred

in the associated performance characteristics between these two workloads (i.e. 3,000 and

7,000 requests/interval) then the resulting clusters would not provide the correct inferred

information. Thus, the cluster span should be selected so as to avoid such potential deviations

from causing the loss of important information.

To conclude, the no similarity interval parameter has an important influence on

the outcome of the cluster creation algorithm. Small values of this parameter generate many,

more focused clusters, while increased values form less clusters with larger spans, or scopes.

The trade-off is between accuracy and efficiency. Creating more focused clusters may increase

accuracy, but may be less efficient in case the fine granularity obtained was not necessary. On

the contrary, larger clusters may be more efficient and reliable, as more data samples are used
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to infer the cluster information. However, relevant information may be lost if too extensive

scopes are selected (e.g. for 4,000 no similarity interval, in Figure 5.16, and for 10,000 no

similarity interval, in Figure 5.18, no similarity interval values in the presented

test case).

The tested example scenario on Duke’s Bank application (section 5.2) showed how component

redundancy can be used to optimise system memory usage with variations in the system

load. System load variations were obtained by maintaining the underlying platform resource

availability constant and modifying the incoming workloads on the application. The current

AQuA J2EE prototype did not measure environmental parameters such as hardware and

software resource availability (e.g. CPU load, memory occupancy, bandwidth consumption

and processes, threads or connections available). The system memory consumption was

measured separately at the JVM level and visualised using the GCViewer monitoring tool.

For this reason, the memory consumption data was not collected by AQuA J2EE and was

thus not available for the learning algorithm. The way this data would be used to detect the

optimal redundant component in the performed test case scenario is discussed next. The

tested example scenario did not directly optimise application response times. Thus, analysing

this parameter as part of the learning procedure would have brought no significant difference

in the distinct execution contexts discovered and their associated optimal redundant compo-

nents.

The 500-bean-age redundant component was used during the performed tests, for the

two different system loads (i.e. generated by 1 and 60 concurrent users respectively). Clusters

of information were created for the 500-bean-age variant, based on the collected work-

load data. The memory consumption measured in the corresponding workload conditions

would be associated with the inferred information element of each generated cluster. During

the learning process, further measurements would be collected while the 10-bean-age

redundant component was running under a low user load (e.g. 1 user). The clusters generated

based on the collected data samples would be associated with the 10-bean-age redundant

component’s performance description. This component’s description would also indicate the

occurrence of exceptions thrown in case this variant was run under increased system loads

(e.g. generated by more than 20 users, on a certain platform). Based on the performance

descriptions available for the two redundant components, the evaluation algorithm would

automatically determine that the 10-bean-age variant was optimal under low system

loads, while the 500-bean-age variant was optimal under increased system loads.

Two important configurations must be set on the information-inference learning procedure.

First, system administrators have to decide which environmental parameters to consider for

calculating the overall similarity factors between data samples (e.g. incoming workloads,

available hardware and software resources). Second, administrators must specify the

parameters to be considered when evaluating the components’ performance characteris-

tics and determining the optimal redundant variants (e.g. response times, throughputs,

consumed hardware and software resources). Certain parameters in the two categories

may overlap. For example, memory consumption may be used both to characterise an

application’s execution context as well as the application’s performance. However, the

way a parameter is interpreted in the two cases is conceptually different. In the previous

example, when describing an execution context the memory parameter would indicate the

memory availability, while from a performance perspective it would indicate the memory

consumption of an application configuration. Using the same monitored parameters to group
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data samples into clusters and to evaluate performance characteristics of components has

an important advantage. Namely, it allows the detection of cases in which the parameters

used to describe the components’ execution contexts are insufficient. In this case, different

performance characteristics (e.g. response times, throughputs, or memory availability) would

occur for apparently similar execution contexts (e.g. incoming workloads, CPU and memory

usage). Using the performance metrics to describe execution contexts would generate in this

case different clusters of information, with different occurrence probabilities of the associated

performance characteristics. These probabilities would be taken into consideration by a

more sophisticated evaluation algorithm for determining optimal redundant components

and their corresponding risks. This situation would also alert system administrators to try

and determine the extra execution context parameters that may be relevant in predicting the

measured differences.
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CHAPTER

SIX

Conclusions

Goals of this chapter:

• The proposed component redundancy-based adaptation approach addresses real per-

formance optimisation needs and system management requirements.

• The AQuA framework supports redundant components and automates the

redundancy-based performance optimisation and system adaptation processes.

• AQuA’s modular design enables the reuse of its individual management functions and

encourages the adoption of separate custom solutions from representative research ar-

eas.

• The AQuA J2EE prototype provides a valid instance of the AQuA management frame-

work, for the J2EE component technology and the JBoss application server

• Test case scenarios and experimental results support the feasibility and applicability of

the component redundancy-based solution and the AQuA framework for automatically

optimising system performance.

• Related work on redundancy usage and automatic system management is complemen-

tary to the thesis. Existing approaches can be adopted to further the capabilities of the

presented AQuA framework towards providing a complete autonomic management

solution for enterprise systems.

6.1 Problems Addressed

Software systems are increasingly being implemented to control, manage and provide access

to information and real world processes. The growing complexity of computer systems and

their integration into everyday life places important demands on software management.

Enterprises have largely adopted component technologies for building large-scale, distributed

applications. Component Based Systems (CBS) are generally developed by acquiring multi-

ple components, possible off-the-shelf (COTS), and assembling them together into a coherent

application, which supports the enterprise’s business processes. Software application servers

are used to provide common middleware services to enterprise application components, such
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as security, transactions, connectivity and lifecycle management. This clearly separates the

system’s business logic from its middleware support, allowing programmers to concentrate

on implementing the application’s functionality while being able to reuse the middleware in-

frastructure provided by the application server. This approach significantly enhances system

modularity, flexibility and reusability. System implementation and management costs and

risks are consequently reduced. Nonetheless, the emerging behaviour of enterprise systems

built using such component technologies is considerably complex. Complexity arises from the

complexity of the implemented business processes, the complexity of the underlying middle-

ware used and the dynamic nature of enterprise systems and their execution environments. In

consequence, managing such complex enterprise systems and ensuring their quality require-

ments becomes a difficult process.

While successfully addressing system manageability and reusability requirements, current

component technologies provide little support for performance management tasks. Namely,

they supply little or no means of predicting and controlling the emerging performance of soft-

ware systems assembled from distinct components. Static component testing and tuning pro-

cedures are undeniably important, but they provide insufficient performance guarantees for

components that are to be run in diverse component assemblies, under unpredictable work-

loads and on different platforms. The environmental conditions in which a component may

run as part of a software application can periodically change during the component’s lifetime.

Often, no single component implementation or deployment configuration exist that can yield

optimal performance in all possible conditions under which a component may run. Con-

sequently, system optimisation and tuning processes must be repeatedly performed during

system runtime, rather than only once before system deployment. Nonetheless, manually op-

timising complex applications and adapting them to changes in their running environments

is a costly and error-prone task. In consequence, the essential necessity for automating system

management procedures has been identified.

6.2 Solution Overview

The thesis proposed a solution for automating the performance optimisation of component-

based enterprise systems. The solution is based on using functionally-equivalent redun-

dant components, optimised for distinct execution environments (e.g. incoming workloads).

Knowledgeably alternating the use of redundant components allows applications to adapt to

variations in their execution environments and yield optimal performance at all times. As

such, systems are dynamically configured so as to use the optimal redundant components in

each execution context.

To support this process, the thesis additionally proposes an automatic management frame-

work called AQuA (Automatic Quality Assurance). The framework’s functional goal is to

be able to perform the necessary monitoring, decision and adaptation operations without the

need for human intervention. AQuA manages redundant components and enables software

systems to fluently mould to their changing execution environments. The thesis focus is on

optimising system performance. Nonetheless, other system qualities, such as reliability and

availability, can also be managed based on the proposed component redundancy principles

and automatic management approach.
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At runtime, AQuA monitors application components and their execution environment. Col-

lected data is analysed so as to detect performance anomalies or significant variations in the

system’s performance characteristics or running conditions. AQuA subsequently evaluates

available redundant components and determines the optimal system configurations. System

adaptation decisions are subsequently taken, considering the predicted benefits of the selected

optimisation solutions as well as other related factors such as potential costs and risks. Finally,

system adaptation decisions are automatically enforced into the running system. Part of the

framework’s control feed-back loop, system adaptation results are subsequently monitored

and the actual performance gains are compared with the intended benefits. Collected mon-

itoring data is analysed and used to automatically learn and improve AQuA’s management

behaviour over time.

While the proposed redundancy-based optimisation solution is conceptually simple, it is by

no means straightforward to implement. Global performance optimisation issues need to be

considered in addition to local optimisations. The impact that performance optimisations have

on other system qualities, such as correctness, or dependability has to be considered. Thus,

the solution’s complexity is precisely the reason for which the management processes required

to support it should be automated, as specified in the thesis. Finally, the proposed approach

must be integrated with other system management mechanisms in order to provide a com-

plete autonomic management solution.

6.3 Review of Contributions

6.3.1 Using Component Redundancy for

Optimising Performance

The thesis proposes a performance optimisation solution based on redundant components

(chapter 3). Conforming to this approach, a number of redundant components are prepared to

provide certain application functionality. While functionally equivalent, each redundant com-

ponent is optimised for a different range of running conditions, such as different incoming

workloads or available system resources. The redundant components are knowledgeably al-

ternated during runtime, so as the system uses the optimal redundant components at all times.

This enables applications to initially optimise their performance for the execution context in

which they are deployed and run. Most importantly, it enables applications to dynamically

adapt to subsequent variations in their running environments. As a component’s execution

environment changes, the component is dynamically replaced with an equivalent redundant

variant optimised for the new running conditions. The proposed solution completely sepa-

rates the available redundant behaviours from each other and from the adaptation logic used

to select their alternate usage. The solution’s modularity allows redundant components and

adaptation logic policies to be independently added, deleted, or modified, thus improving

system flexibility and manageability.

The solution specification takes into account the possible side effects a local redundant

component-swapping operation can have on the overall system performance. As such, it is

proposed that local component optimisation processes are combined with a global system
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control facility, which would facilitate a general system view and an overall optimal system.

The manner in which a system’s performance optimisation may affect other system qualities,

such as security or reliability, must also be considered.

6.3.2 Automated Performance Optimisation Framework

An automatic management framework was proposed to perform runtime monitoring,

decision and adaptation operations on administered systems. The implemented tasks were

necessary for supporting the proposed redundancy-based optimisation solution. Using

component redundancy, the AQuA (Automatic Quality Assurance) framework enables

applications to fluidly shape their behaviours so as to optimally fit in their varying execution

environment.

Modular, Extensible Design

The main functionalities the AQuA framework features include runtime monitoring, anomaly

detection, component evaluation, adaptation decision, component activation and learning.

Each of these functionalities can be independently extended as part of separate research ef-

forts, or by adopting more complex solutions from the existing specialised research areas (e.g.

system monitoring, policy-based adaptation logic, data mining, knowledge management,

machine learning, component hot-swapping, or component versioning). The AQuA frame-

work specification shows the required management functionalities and the way they should

interoperate in order to provide a complete performance optimisation solution. It provides

a way of integrating separate research efforts on monitoring, policy-based management and

dynamic adaptation subjects into a single, complete, autonomic administration solution. The

modular framework design allows for any of its functionalities to be independently updated

without affecting the other functionality implementations.

Learning Capabilities

Learning capabilities were specified for the AQuA framework in order to enable it to improve

its management behaviour over time, with minimum human intervention. A learning mech-

anism was designed to analyse collected monitoring data and infer high-level information on

the components’ performance characteristics. The goal of this automated learning mechanism

is to simulate the processes that human administrators or testers would perform, in order to

acquire information on the components’ performance behaviours in various environmental

conditions. As such, monitoring data collected in certain execution environments is merged

into clusters of information and used to predict the components’ performance in similar

execution contexts. The more data samples are available in a cluster, the higher the confidence

level associated with the performance prediction associated with that cluster.

The proposed learning capability avoids imposing extra requirements on component

providers or deployers. More specifically, precise information on the components’ perfor-

mance characteristics is not compulsory to be provided at component deployment time. This

information can be automatically inferred over time from monitoring data collected while

components are integrated in the targeted managed system. The learning process is executed
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during the system’s runtime. Additionally, it can be initially run while the system is running

off-line, under simulated or predicted workloads and data.

The learning mechanism is also used to avoid completely relying on initial performance in-

formation obtained from static component testing procedures. Such procedures are typically

performed while components are executing on various platforms, different from the targeted

running environment. Thus, they often provide insufficiently accurate or reliable information

on the components’ performance characteristics, when run in dissimilar environments. Initial

information can indeed be provided at components’ deployment time, from performed tests

and previous experience with the targeted components. In this case, the learning process is

subsequently used to validate and accordingly update initial performance information, with

accurate monitoring data obtained while the components are running in the targeted system

and execution environment.

Specialised Design for Managing

Component-Based Enterprise Applications

The AQuA framework was specifically designed to manage enterprise applications built using

component technologies based on contextual composition frameworks [91] (subsection 2.3.4),

such as EJB, or CCM. For this reason, AQuA’s design was devised to meet the particular char-

acteristics and requirements of such enterprise systems. A decentralised management control

topology was specified for scalability reasons to perform local management operations at the

component level. In addition, two global management solutions were proposed to provide

general control over the decentralised framework instances and ensure overall system opti-

misation. As such, global management can be achieved by using a centralised framework

entity to manage component-level framework instances, in a hierarchical topology. A second

global management solution can be achieved by specifying and implementing a communica-

tion protocol between the decentralised framework instances. This approach is possible when

managing application performance because of the manner in which the local performance of

individual components influences the overall performance of a client transaction. As such,

local component managers involved in a client transaction can intercommunicate to signal the

influence local optimisations on other components had on their managed components. The

communication protocol should be specified and tuned so as the emerging behaviour of local

component managers and the communication protocol led to an overall optimal configuration

at system level. A decentralised management control topology was specified, implemented

and tested as part of the AQuA J2EE prototype (sections 3.11 and 4.2). The hierarchical and

communication protocol-based approaches for global system optimisations were specified and

discussed in section 3.11.

6.3.3 Relevant Examples of Component Redundancy

Applicability for Performance Optimisation

Several example scenarios were shown to indicate the applicability of the redundancy-based

solution for performance optimisation. The examples show how the alternate usage of redun-

dant components can benefit system performance, or other quality attributes, such as relia-

bility and manageability. Two such examples were implemented and tested, as described in

172



sections 5.1 and 5.2. The AQuA J2EE framework prototype was tested for one of the imple-

mented example scenarios, which involved the Duke’s Bank sample J2EE application. Test

results from the experimented example scenarios clearly indicated the potential benefits of the

component redundancy-based solution.

6.3.4 Framework Prototype for J2EE

A fully-automated prototype of the AQuA framework - AQuA J2EE - was implemented for

the J2EE component technology. The JBoss application server was selected as the J2EE ap-

plication server for AQuA J2EE. Nonetheless, due to the way it was designed, AQuA J2EE

can be modified to work on any J2EE-compliant application server (section 4.3). The server-

independent parts of the AQuA prototype can be seamlessly reused to create a manage-

ment framework for various application servers, or different component technologies. This

can be achieved by integrating AQuA J2EE with different monitoring and system adapta-

tion solutions, as appropriate for the targeted management platforms. For example, a server-

independent version of AQuA can be built by integrating AQuA J2EE with the COMPAS mon-

itoring tool1 and a platform-independent proxy-based component-swapping solution.

The current AQuA J2EE implementation uses custom monitoring and component-swapping

mechanisms for the JBoss application server. JBoss EJB containers were instrumented to ex-

tract runtime monitoring data and send it to AQuA’s adaptation and learning logic, for fur-

ther processing. A modified version of JBoss’s hot-deployment functionality was used to im-

plement AQuA J2EE’s component-swapping capability. AQuA J2EE’s adaptation logic was

specified based on a decision policy-based approach. The ABLE Rule Language (ARL)2 was

used to declare decision policies, in scripting files completely separated from the underlying

framework mechanisms (section 4.6). This allows human system administrators to seamlessly

state their high-level management goals and strategies, without the need to understand or

modify the underlying framework mechanisms. In addition, administrators can use their

management expertise to express management policies in a formal manner, which can sub-

sequently be interpreted and executed by an automatic management framework.

A learning mechanism was implemented for AQuA J2EE, in order to automatically analyse

collected monitoring data and infer higher-level information on the components’ performance

characteristics. The algorithm used to implement the learning function is based on grouping

and merging data samples based on the similarity of the execution environments in which the

samples were collected. Merged data samples form clusters of information which are used to

predict components’ performance in reoccurring execution contexts. The more data samples

are merged into a cluster, the higher the reliance that can be placed on performance predictions

that are based on the information in that cluster. The information inference learning procedure

was described in section 3.13. The learning process can be triggered whether repeatedly dur-

ing runtime, as new monitoring data samples become available, or upon request, to analyse

an entire set of collected monitoring data samples.

The automatic management capabilities of AQuA J2EE have been successfully tested on a

1COMPAS J2EE monitoring and analysis tool: compas.sourceforge.net
2ABLE Rule Language (ARL), from IBM: www.research.ibm.com/able
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sample J2EE application, the Duke’s Bank3. AQuA J2EE automatically detected changes in

the execution environment (i.e. incoming workloads), decided to adapt the managed applica-

tion (i.e. the Duke’s Bank) and performed the corresponding EJB-swapping operations, while

the application was continuously running [28] and [33]. Obtained test results showed that

system performance and availability were visibly improved when AQuA J2EE was used to

adapt the application, compared to the case when no adaptation was used.

The modular design of AQuA J2EE allows any of its management functionalities to be inde-

pendently modified, without affecting the rest of the framework implementation. As such, any

of the framework’s management functions can be separately extended or replaced with cus-

tom solutions from the respective research areas. The same framework infrastructure can be

used to manage other system quality attributes, such as reliability or availability. AQuA J2EE

can be customised in this case so as to serve the new management goals, as follows. The

monitoring functionality can be extended in order to collect additional system parameters, as

relevant for the new managed quality attributes. Decision policies can be specified to state the

new system management goals, which include the additional quality attributes. Finally, addi-

tional system adaptation mechanisms can be implemented to allow the dynamic replacement

of components with various granularities or of different types, such as middleware services

and application servers.

6.4 Comparison with Related Work

This thesis is related to work from two main research areas. Namely, the presented work is

mostly similar to research on using redundancy for enhancing system quality characteristics

and to research on autonomic management frameworks. Additionally, relevant related work

also exists in certain sub areas of the aforementioned research domains. Such sub areas

include work on system monitoring, policy-based management, component hot-swapping,

data mining, machine learning, statistics, knowledge management, system evolution and

emergence. Relevant results from these research areas can be adopted and integrated with

the proposed component-redundancy based optimisation solution and with the AQuA

framework. AQuA provides an integration point for the outcome of multiple autonomic

computing related areas. Related work from these two research domains was discussed in

chapter 2. The rest of this section discusses the most significant aspects differentiating the

thesis from related work in the two aforementioned domains.

6.4.1 Using Redundancy for

Improving Performance and Dependability

The necessity for multiple implementation variants for achieving optimal performance in dy-

namically changing execution environments has been indicated in other software research

domains, including the management of scientific applications [93], operating systems [3],

3The Duke’s Bank sample J2EE application from Sun Microsystems:
java.sun.com/j2ee/tutorial/1 3-fcs/doc/Ebank.html
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Web services and Service-Oriented applications [64], data management applications [101], dis-

tributed real-time embedded (DRE) systems [8], reflective middleware and component tech-

nologies (e.g., K-Components [37] and Arctic Beans4), or network-centric combat systems [83].

The general concepts in these approaches are similar to the proposed redundancy-based op-

timisation solution. Nonetheless, these various research efforts aim at managing significantly

dissimilar system types. This causes considerable differences in the way the respective solu-

tions are designed and implemented. The main differences between the thesis solution and

some of the most similar research projects are discussed next.

Performance optimisation techniques such as presented in [101] are conceptually similar to

the presented component redundancy-based optimisation approach. The main features dif-

ferentiating AQuA’s adaptation solution from these approaches are the lack of requirements

on component providers to supply accurate initial performance information on individual

redundant components, or replacement mechanisms for each separate pair of redundant vari-

ants. In addition, the actual exploration work carried out in the two approaches is significantly

different. The research presented in [101] focuses on an adaptation decision algorithm, called

Delta. The goal of the Delta algorithm is to determine the most favourable cross-points for

hot-swapping redundant components, so as to attain optimal performance benefits. Targeted

scenarios involve component implementations that take a significant amount of time to hot-

swap, in comparison with client request response times. An example of such a scenario in-

volves the hot-swapping of two different persistence-support structures, a relational database

and an LDAP style Directory. AQuA is different in that it targets the management of enter-

prise application business logic, and does not attempt to transfer state between hot-swapped

component implementations. Thus, in general, the delays induced by the actual hot-swapping

operations are not significant when compared to client request response times. If they were

for some cases, the Delta algorithm can be adopted by AQuA’s decision process.

The two research approaches also differ in their requirements for the source of redundant

components and their hot-swapping mechanism. In the framework proposed in [101], the

component developer is responsible for providing all component implementations, as well as

the code that controls the hot-swapping between these implementations. This is not a require-

ment in the AQuA framework. In AQuA, different redundant components can be acquired

from different providers. The hot-swapping between redundant components is performed

by the AQuA framework, uniformly for all redundant component pairs. In other words, in

AQuA, the component variant hot-swapping operation does not depend on the particular

component variants involved. AQuA provides an entire management framework specifica-

tion, with provided monitoring, adaptation logic and hot-swapping operations. The targeted

applications that AQuA was devised for are enterprise applications built using contextual

composition frameworks [91]. The adaptation logic in AQuA is based on performance infor-

mation acquired at runtime, based on monitored data and a provided learning process. In

[101], the decision process is based on static component performance information provided

at component deployment time. By design, AQuA considers multiple execution context pa-

rameters, not only workload. This is because in certain cases, application or component-level

workload measurements are not sufficient to indicate significant changes in a component’s ex-

ecution environment. Considering and analysing multiple environmental parameters, such as

software and hardware resource usage, provides a more complete view of a component’s run-

4Arctic beans project: http://abean.cs.uit.no
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ning context, which has a significant influence on the component’s performance. In short, the

focus of the two research efforts renders them complementary rather than conflicting. Namely,

the decision algorithm presented in [101] can be adopted and used as part of AQuA’s decision

policies, for managing systems in which the adaptation operations take considerable periods

to execute.

The Active Harmony project5 proposes an automated performance management framework

for scientific applications and grid computing. The taken approach is based on automatic

library swapping and parameter configuration during runtime. More precisely, the Active

Harmony system allows the dynamic switching of algorithm implementations and the dy-

namic configuration of library parameters, in order to automatically tune the applications’

performance during runtime. The associated research focuses on the specification of an algo-

rithm that is able to find the optimal parameters configuration for various execution contexts.

Performance parameters considered include CPU time and memory. Unlike the AQuA frame-

work, in the Active Harmony approach applications need to meet several requirements in

order to work with the Active Harmony server. These requirements include providing infor-

mation on the application’s tuneable parameters and needed resources. These are specified

in a special-purpose Resource Specification Language (RSL) and accessible via a specific API.

These requirements may be achievable in the targeted scientific application domain, where

the swappable components consist of software libraries implementing scientific algorithms, or

data storage structures [93]. As an additional requirement, in the Active Harmony approach

the internal implementation of managed applications needs to be modified. Specifically, ap-

plications must register with the Active Harmony server upon start-up and to periodically re-

quire parameter tuning updates from the Active Harmony server during runtime. The AQuA

framework imposes no such requirements, as the application instrumentation and adaptation

mechanisms are implemented outside the actual application components. More specifically,

AQuA’s monitoring sensors and adaptation actuators may be implemented whether in the

supporting system middleware, or in system-independent component proxies.

Redundancy as a means of achieving dependability and performance for Service-based In-

ternet systems, such as Web services systems, is proposed in the RAIC (Redundant Arrays

of Interchangeable Components) project [64]. The addressed problem domain in this case

however, is different in scope from the presented thesis. This is because RAIC was devised to

manage systems that are composed of various Internet services, offered by different providers,

from different geographic locations. No single authority owns, or has complete control over

the entire system. The developer of one system service has no knowledge of, or access to

the implementation, deployment platform, or supporting resources of the other services it

needs to rely upon. Redundancy support cannot be implemented in this case at the execution

platform or middleware level. Instead, redundancy support for the Internet services used is

implemented at the (client) software application level. The client application dynamically se-

lects the service provider that is most reliable and that supplies the optimal performance in

the current execution context. AQuA can be used in combination with the RAIC approach, to

allow a certain service provider to supply optimal performance to its clients, at all times; this

may increase the provider’s chances of being selected by interested clients.

The use of multiple implementation strategies for performance optimisation purposes, as in

the Open Implementation approach [57], is similar to the intent of this thesis. The essential

5The Active Harmony project: www.dyninst.org/harmony
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difference between the two approaches is in the manner in which the optimal module imple-

mentation is selected from the available implementation strategies. The Open Implementation

initiative allows clients to decide which implementation variant to instantiate and use for op-

timal performance, in a specific context. The proposed AQuA framework automatically takes

such decisions. The rationale behind the proposed approach is that often there is no single

strategy that is optimal under all possible execution contexts in which a component will run.

Therefore, clients may not be able to statically decide the optimal strategy to select, at applica-

tion design and implementation time. The strategy used needs to dynamically change in order

to accommodate runtime changes in the component’s execution context. Nonetheless, man-

ually determining and employing the optimal implementation strategies, in due time, would

be prohibitively expensive for human system managers. This would be especially the case

for complex systems and frequently changing environments. Therefore, AQuA automates the

management processes needed for selecting and using the optimal implementation strategies

at all times.

Another important difference between the Open Implementation approach and the AQuA

management framework is in the manner in which the optimal implementation strategy is

selected. Conforming to the Open Implementation, the client decides on the optimal imple-

mentation strategy to use. The decision is based on information on the way the client will use

the module implementation. In contrast, in the AQuA approach, the decision is taken at the

server, or provider side, rather than at the client side. That is, each component (or module) de-

cides which implementation strategy to use for handling incoming client request. The decision

is based on information on the current component workload, usage patterns and available sys-

tem resources. For this reason, the Open Implementation and AQuA framework can be used

together as complementary approaches.

In addition to performance management, component redundancy has previously been used to

provide fault-tolerance and improve system reliability. These approaches are fundamentally

different from this thesis’ work, in both their targeted objectives and their employed strate-

gies. More precisely, improved reliability was typically achieved by running multiple redun-

dant components (sequentially or in parallel), comparing the obtained results and deciding

on the correct response to return. The presented performance optimisation solution is based

on selecting a single redundant component to execute at any one time, so as to attain optimal

performance under varying running conditions. The Recovery Blocks (RB) and the N-Version

Programming (NVP) techniques use redundant software variants to provide fault-tolerance

for software systems. Testing and decision mechanisms are employed in both approaches,

for managing the multiple variants and obtain the correct results. These aspects constitute

the main similarities with the presented dissertation research. Nonetheless, important differ-

ences stem from the fact that fault-tolerance related approaches target functionality-specific

faults, particular to each application, whereas the thesis aims at solving performance-related

problems, functionality-independent and thus common to all applications. More precisely,

in order to detect functional errors, fault-tolerance schemes require knowledge on the correct

system behaviour, as well as methods for assessing system behaviour correctness during run-

time. These requirements need to be separately provided for each particular system, as they

directly depend on the specific system functionalities. On the contrary, the thesis focuses on

performance-related problems, common to all applications and independent of functionality

semantics specific to each system. The AQuA framework can also be used to handle certain

types of faults that can be detected independently of system functional semantics. Such faults
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include thrown exceptions and non-functional integration faults, such as deadlocks. Perfor-

mance problems, exceptions and integration faults can generally be detected without requir-

ing application semantics information. Application semantics specify the correct behaviour of

an application. Being independent of the application’s semantics, the presented framework

does not need to be re-implemented for each particular application it manages. The frame-

work can be implemented once, as part of the component platform, or middleware layer, for

the benefit of all applications deployed on such platforms. The framework implementation

will evidently need to be configured according to the specific performance requirements of

each particular application managed.

With respect to performance overheads induced by fault-tolerance schemes, the RB technique

introduces execution-time overheads, because of the acceptance test and sequential execution

of variants. NVP introduces resource usage overheads, as all variants execute in parallel, even

when no faults are detected. In the AQuA framework a single redundant component is run

at any one time for handling a certain client request. This means that in AQuA, no process-

ing overheads are introduced since multiple redundant components are absent. Also, no ac-

ceptance tests are performed in AQuA for component output assessments. However, certain

framework functionalities for supporting component redundancy and automatic system man-

agement in AQuA will certainly have some impact on resource usage. Specifically, monitoring

functions will constantly impact system performance as they are performed continuously dur-

ing runtime, in order to collect information and detect performance anomalies. Component

activation operations, involving the hot-swapping of redundant components, will also impact

system performance, but only during application adaptation periods. The adaptation logic-

related processes, including the analysis of monitoring data, anomaly detection and learning,

component evaluation and adaptation decision operations continually need system resources.

Nonetheless, these operations can be run remotely from a separate station and hence would

not impact the managed system performance. In addition, AQuA’s specification allows for its

functionalities to be configured for performing optimally in different running contexts.

In the presented fault-tolerance schemes, neither the variants nor the decision algorithm (or

adjudicator) can be changed during system execution. In the RB scheme, it is because the ac-

ceptance test is mingled with the functional variants. In contrast, AQuA’s design allows for

both redundant components and adaptation logic policies to be dynamically added or deleted

at runtime. This is a consequence of the fact that component variants are separated from each

other, as well as from the evaluation and decision logic policies. This allows redundant com-

ponent variants and decision policies to be modified separately and independently of each

other. In the RB approach, the adaptation logic for deciding which variant to use is implicit

and cannot be modified. It is dictated by the order in which variants are listed in a recovery

block. In the case where the primary variant is faulty and fails the acceptance test, it will still

be used as the primary option for handling subsequent client requests. The AQuA framework

is different in that it is able to learn from its previous experience with a managed system and

accordingly modify its adaptation logic. Thus, AQuA always aims at using the optimal redun-

dant component(s) in each situation, and avoids reusing undesired component configurations.

Research in the area of dynamic component versioning bears certain similarities to this thesis.

However, the main intent and goals of dynamic component versioning and redundancy-based

performance optimisation are notably different and focus on different system management as-

pects. In some component versioning approaches [77], a number of component versions can

coexist, in order to continue providing deprecated functionalities and accommodate already
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existing clients. This is different from the presented redundancy-based approach. The differ-

ence is that in component versioning, different versions can provide different functionalities,

or services. For example, a new component version can support new functionalities compared

to the old one, whereas the old version can support functionalities that have been deprecated

in the new version. In these approaches, new versions, with new functionalities and improved

performance, are meant to replace the old versions, in time. Old versions are only temporar-

ily maintained in the system, for version compliance-related reasons. They are not intended

as alternatives to new versions, or as part of the system’s adaptation facilities. In the AQuA

approach, all component variants provide the same, or equivalent, functionalities. All redun-

dant variants advertise the same provided functions or services. AQuA can also be used for

cases in which component variants would trade the quality of their service responses, includ-

ing (for example) result accuracy, the security method employed, better service performance,

or reduced resources demand. In other words, service degradation can be employed in order

to improve the system’s non-functional quality characteristics. Nonetheless, the functionali-

ties advertised by the redundant component variants to external clients, through their public

interfaces, are always identical.

6.4.2 Autonomic Performance and

Dependability Management

In the area of autonomic system management, there are no performance optimisation

frameworks that completely overlap with the present work on AQuA J2EE. More precisely,

no similar frameworks exist that employ monitoring, learning, decision and adaptation

facilities for applications based on contextual composition frameworks [91], at the application

component level. General frameworks for self-adaptive systems are presented in [72] and

[43], featuring inter-related monitoring, analysis and adaptation tiers. AQuA J2EE aligns

with these solutions, while specifically targeting the performance of enterprise applications

based on contextual composition middleware [91]. Management solutions have been

devised for other component technology types (e.g. [43] or [93]) or Web services based

systems [64]. These frameworks differ from the thesis by their management requirements

and subsequent applicable solutions, as discussed in subsection 2.4.3. For example, the

Rainbow project [43] proposes an automatic framework for managing the quality attributes

of distributed component-based systems. The proposed AQuA framework complies with the

general Rainbow architecture and goals, while focusing on the performance management of

Internet-enabled enterprise systems. In addition, while Rainbow is based on a centralised

model-based approach, AQuA was designed towards decentralised and hierarchical control

solutions.

Research efforts for automating system management for other quality attributes complement

the presented performance optimisation solution. Several projects, such as JAGR [20] and

JADE [73], propose automatic frameworks for managing the availability and dependability

characteristics of component-based applications. Similarly to AQuA, these frameworks were

also devised to manage Internet-enabled enterprise systems, focusing on the J2EE component

technology. JAGR [20] uses component level micro-reboots as the repair mechanism for

transient faults. A hot-deployment based solution was adopted for micro-rebooting faulty
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EJB components on JBoss. AQuA J2EE can be used for the same purpose, by specifying

management policies that detect and dynamically replace a faulty redundant component with

the same redundant component. This procedure would be equivalent with re-deploying or re-

booting a component. JADE [73] focuses on automating the deployment and re-configuration

of J2EE systems. Managed entities can be entire servers (e.g. Tomcat), server-provided

services (e.g. security, or transactions), or individual application components (e.g. EJBs). The

proposed redundancy-based solution and AQuA framework is complementary with this

work. For example, the platform-independent part of AQuA J2EE can be integrated with the

proprietary monitoring and re-deployment mechanisms implemented in JADE. This would

extend the quality attributes that can be automatically managed in J2EE systems and leverage

the presented policy-based problem-detection and adaptation decision mechanisms.

Monitoring and data analysis tools such as COMPAS6 are compatible with the monitoring

and diagnosis module of AQuA J2EE. For example, the modified version of JBoss used

for AQuA J2EE has initially been configured to send monitoring data to the COMPAS

monitoring tool, which further analysed collected data, displayed it into performance graphs

and signalled performance alerts [28].

Several researchers in the area of model-based adaptable software use system architecture as

a basis for constructing, evaluating and re-factoring system models [23, 72, 37]. Architectural

system models are represented in a graph-like manner. System components represent the

nodes of the graph. Component interconnections are represented as directed arcs in the

graph, correspondingly connecting the graph nodes. System adaptation consists of changes in

the system components and component interconnections, by means of graph reconfiguration

operations. System evaluation and optimisation operations are performed in a centralised

manner in these schemes. Monitoring information is centralised, the overall system is evalu-

ated and globally optimised. For large-scale systems, possibly consisting of tens or hundreds

of components, globally evaluating and optimising the system whenever a local problem is

being detected might introduce significant overheads and not scale well. This thesis proposes

propose a framework where the system adaptation operations are decentralised. In the

presented approach, when a problem is detected locally, by component-level adaptation

mechanisms, attempts are initially made to locally solve the problem, without affecting the

rest of the system and without involving higher-level adaptation mechanisms. In addition,

two possible approaches are proposed for handling problems at a higher or global level.

One approach involves a hierarchical organisation of the adaptation mechanisms. In this

approach, local, component-level adaptation mechanisms are controlled by higher-level

mechanisms. A single highest-level adaptation mechanism is always available to supervise

the entire adaptation framework from a global level. When this approach is used, unsolved

local problems are signalled upwards in the hierarchical adaptation tree and addressed at

higher adaptation levels. Global system optimisations can also be triggered periodically or

upon request.

This thesis’ aim was to provide automatic performance optimisation capabilities for managing

Internet-based enterprise systems. This goal complies with the general objectives of the

self-adaptive and autonomic computing initiatives. The provided functions represent a

subset of the functionalities specified as part of these initiatives. The AQuA framework

was devised to support the goals of the presented performance optimisation solution. Its

6The COMPAS monitoring and analysis tool: compas.sourceforge.net
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design conforms to the general frameworks proposed in several research efforts from the

self-adaptive and autonomic management area (e.g., [72], [43], and [54]). The main similarities

to these frameworks are related to the functional modules involved and their connection

in a closed control loop. Monitoring, decision logic and system adaptation functions are

specified in most self-management frameworks. Therefore, most self-adaptive software

solutions present certain similarities to this thesis. Nonetheless, the differences in the targeted

domains and system types raise different problems, imposing different requirements on the

performed management processes. Therefore, different approaches have to be adopted when

specifying, designing and implementing adaptation mechanisms, depending on the general

characteristics of the targeted system type.

The term ’component’ is used with different meanings in different research initiatives, to

refer to various system parts, such as servers, clients, software modules or entire software

applications. This is an essential aspect when discussing the main differences between the

thesis and related work in the self-adaptive software area. The unique nature of Internet-

based enterprise applications built using component technologies such as EJB might make

general approaches devised for dissimilar component-based system types difficult to apply

(subsection 2.4.3). Some of the main system type characteristics that AQuA was customised

to consider include soft inter-component bindings and unpredictable, frequent fluctuations

in the number of component instances. In systems in which the managed ’components’

represent servers, software modules, or embedded devices such issues may not be as

stringent.

AQuA uses component hot-swapping operations in order to switch between the available

redundant components. The same mechanism can also be used to dynamically replace or

update AQuA’s adaptation logic, though this functionality is not supported in the AQuA J2EE

prototype. In AQuA J2EE, the hot-deployment facility provided by the application server

used (i.e. JBoss) was modified to support component-swapping operations. Efforts towards

standardizing and implementing component hot-deployment functionalities in J2EE appli-

cations are being made in research initiatives such as Sun Microsystem’s JSR 887, or [65].

Available standards and existing solutions for component hot-swapping can be adopted and

integrated into AQuA J2EE.

With respect to monitoring data analysis and learning procedures, several research projects

adopted similar approaches for processing extensive data in complex systems [34, 25, 24, 102].

The direction taken is to correlate low-level system configurations and monitored data with

higher-level observed events of interest, such as the system’s performance characteristics (e.g.

response times, or throughputs).

In [34], such an approach is taken to automatically optimise the CPU utilisation of an Apache

Web server, by tuning the MaxClients and KeepAlive configurable parameters exposed by

the server. The AutoTune agent framework proposed by this research associates the server’s

various tuning configurations with the resulting performance characteristics, in order to

automatically determine the optimal server configurations.

The approach proposed in [25] uses system history information to predict and argue about

future performance anomalies. The proposed method associates system state signatures with

observed performance problems in order to assist operators in diagnosing and comparing

detected performance anomalies. Raw monitoring data is merged into clusters of informa-

7JSR 88 on deployment from Sun Microsystems: java.sun.com/j2ee/tools/deployment
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tion, where each cluster associates a system’s state signature with the related performance

problems observed while the system was observed in similar states.

While the research in [25] focuses on predicting and arguing about system performance

anomalies, the presented thesis work applies a similar approach for arguing about the

performance characteristics of various design and configuration variants, with the goal of

identifying the optimal system implementation in each execution context.

6.5 Validation of Redundancy-Based

Optimisation Solution and Framework

Several examples indicating the applicability of redundant components for performance opti-

misation were described in section 3.5. Some of these examples were implemented and tested,

as described in sections 5.1 and 5.2. Obtained results validated the assumption on the po-

tential benefits of component redundancy on system performance. More specifically, one im-

plemented example showed how different redundant components provided optimal response

times under different network loads (section 5.1). A second example, based on the Duke’s

Bank sample J2EE application, showed how different redundant components can provide op-

timal memory usage under different incoming workloads (section 5.2).

The AQuA J2EE prototype was implemented and tested to validate the AQuA framework

specification, for automatic performance optimisation based on redundant components.

AQuA J2EE was tested on the Duke’s Bank sample J2EE application, for which several re-

dundant components were prepared. Obtained test results showed that system performance

and availability were visibly improved when AQuA J2EE was used to adapt the application,

compared to the case when no adaptation was used (subsection 5.2).

In the executed testing scenarios, performance overheads induced by the management op-

erations during normal system execution were insignificant. This is due to the fact that

AQuA J2EE was configured to only manage a certain set of components, rather than the entire

application. In addition, monitoring delays were minimised as a result of implementing sys-

tem instrumentation at the application server level. This instrumentation approach inserted no

extra proxy layers between clients and targeted EJB components, thus avoiding an additional

level of indirection. Though, noticeable delays were recorded during the actual application

adaptation operations. This was caused by client requests being postponed until the required

EJB-swapping procedures were completed. Nonetheless, no client requests were refused and

no client transactions expired during the tests. It is important to note that the goal of testing

AQuA J2EE on the sample Duke’s Bank application was to prove its automatic management

and optimisation potential. The tests showed how the monitoring, adaptation logic and exe-

cution functionalities worked and how they could be used in the tested scenarios. Performed

tests were not intended to exhaustively prove that the current AQuA J2EE prototype was able

to optimise the performance of any J2EE application in the exact manner.

The proposed monitoring data analysis and learning algorithm was tested on real monitoring

samples collected during Duke’s Bank execution. Obtained test results indicated the poten-

tial of the proposed learning approach to categorise available data into distinctive information
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clusters that could subsequently be used to predict component performance. (section 5.3).

6.6 Limitations and Research Opportunities

This thesis presents a dynamic performance optimisation solution based on the automatic se-

lection and swapping of redundant components, in varying environmental conditions. The

AQuA framework and AQuA J2EE prototype were devised as part of this work to automat-

ically perform the necessary management operations associated with the proposed optimisa-

tion solution. The goal of the thesis was to present the component-redundancy based optimi-

sation approach, exemplify execution scenarios in which the approach would prove beneficial

and show how an automatic framework can be employed to perform the required manage-

ment operations for implementing this approach. The thesis attained these goals as presented

in chapters 3, 4 and 5. The completed work can be advanced by extending its constituent parts,

or integrating existing solutions from relevant research areas.

Further studies can advance the analysis on the impact that various designs, implementation

and configuration choices have on system performance. This work would help identify the

most common situations where redundant components can be implemented and used. The

most common or significant cases identified can subsequently be documented in a compre-

hensive specification, similar to performance design patterns, or anti-patterns.

The goal of devising the AQuA framework was to indicate the main functionalities required

to provide automatic management support for the proposed component-redundancy based

solution. The AQuA J2EE prototype was implemented in order to exemplify how the AQuA

framework can be implemented and used to automatically manage system performance at

runtime. Each of the framework’s functionalities can be further extended so as to feature

increasingly complicated behaviours and gradually be able to handle more complex manage-

ment scenarios. As such, possible research efforts can be directed towards extending each

of the AQuA functional capabilities, including the monitoring, anomaly detection, learning,

component evaluation, adaptation decision and component hot-swapping functions. For ex-

ample, the applicability of data mining algorithms, machine learning techniques, statistical ap-

proaches and knowledge management solutions to AQuA’s learning capability can be inves-

tigated. Another important research direction is concerned with the manner in which values

of different monitored metrics, at various system levels, can be correlated and interpreted so

as to identify and pin-point performance bottlenecks and their exact causes. The efficiency of

the component-swapping mechanism can be further optimised, by allowing multiple redun-

dant components to run in parallel. This would avoid the situation in which new incoming

requests received during swapping operations are delayed until the termination of the current

client sessions that execute on the old redundant components. The way adaptation logic based

on other types of decision policies, such as goal-oriented policies, can be applied in the context

of presented solution can be investigated. AQuA J2EE can be enhanced so as to allow decision

policies to be written, deleted, or configured at runtime, after the managed system has started

executing.
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APPENDIX

A

Instrumenting JBoss

JBoss’s implementation was modified in order to allow dynamic monitoring and swapping of

redundant components.

A.1 JBoss Integration with COMPAS

JBoss was instrumented so as to send monitoring events to the COMPAS monitoring and di-

agnosis tool. These include method request and response events and component instantiation

and destruction operations. The purpose was to use COMPAS’s capabilities to graphically dis-

play monitoring data and raise performance alerts during runtime. This facility can be used

by a human administrator to visualise and analyse performance information during system

execution. In case performance anomalies are detected, the administrator can decide to re-

place non-optimal components with redundant variants, so as to remedy the problem. The

redundant component-swapping GUI (section 4.7) can be used for this purpose, to dynami-

cally adapt the managed application.

The code in Listing A.1 shows the way the JBoss application server was modified so as

to be integrated with the COMPAS monitoring tool. The listed code belongs to JBoss’

LogInterceptor class (i.e. org.jboss.ejb.plugins.LogInterceptor). This

container interceptor class was instrumented so as to dynamically extract monitoring events

and send them to a COMPAS instance for further processing. In turn, COMPAS uses received

events to calculate and graphically display performance data on monitored component meth-

ods. Displayed data includes method response times and throughputs, as well as the number

of instances available for each EJB component used.

When the LogInterceptor is instantiated, it creates an object of the ProxyImplementor

COMPAS class (Listing A.1, line 27). The ProxyImplementor’s constructor receives

as parameters the name of the application server used, the EJB class name, the EJB JNDI

name and the type of EJB container used (i.e., StatelessSessionContainer, StatefulSession-

Container, or EntityContainer). Then, during runtime, whenever an EJB’s method is in-

voked, the invoke method of the EJB container’s LogInterceptor is also called (i.e.

Figure xx-b, line 56: returnedObject = getNext().invoke(invocation);).

The LogInterceptor’s invoke method was instrumented so as to send method invoca-

tion events to its associated ProxyImplementor object. The ProxyImplementor ob-

ject is the connection between JBoss and the COMPAS monitoring tool. Similarly, when
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JBoss was integrated with the AQuA J2EE framework, an RGManager object was used

to make this connection (subsection A.2). One method invocation event is sent to the

ProxyImplementor before the actual invocation is forwarded to the targeted EJB in-

stance (Listing A.1, line 51: proxyImpl.preMethodInvocation();). A second

event is sent after a response is returned from the invoked EJB (Listing A.1, line 62:

proxyImpl.postMethodInvocation( methodName ); ).

Listing A.1: Instrumenting JBoss LogInterceptors to

send monitoring events to COMPAS
1 import edu . dcu . pel . compas . monitoring . probe . ProxyImplementor ;

2

3 publ ic c l a s s L ogIn t ercept or extends A b s t r a c t I n t e r c e p t o r

4 {

5

6 prot ect ed ProxyImplementor proxyImpl ;

7

8 publ ic void c r e a t e ( ) {

9

10 //JBoss o r i g i n a l code

11 // . . .

12

13 //PEL con t a in er in s t rum en t at ion code

14 // . . .

15

16 //PEL code f o r COMPAS i n t e g r a t i o n

17

18 //get the curren t con t a in er type : Sess ion or E n t i t y

19 //e . g . , bean type = org . j b o s s . e j b . S t a t e l e s s S e s s i o n C o n t a i n e r

20 S t r i n g ejbContainerType = getContainer ( ) . ge t Class ( ) . getName ( ) ;

21 S t r i n g simpleEJBContainerType = ” s e s s i o n ” ; //” s e s s i o n ” or ” e n t i t y ”

22 i f ( e jbContainerType . toLowerCase ( ) . indexOf ( ” e n t i t y ” ) ! = −1 ) {

23 simpleEJBContainerType = ” e n t i t y ” ;

24 }

25

26 // c r e a t e ProxyImplementor i n s t a n c e − one per con t a in er

27 proxyImpl = new ProxyImplementor( ” JBoss ” , e j bClass , ejbName , simpleEJBContainerType

) ;

28

29 // . . . .

30

31 }//c r e a t e

32

33 //

34 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

35 //

36

37 publ ic Object invoke ( In v ocat ion in v ocat ion ) throws Except ion{

38

39 // o r i g i n a l JBoss code

40 // . . .

41 // o r i g i n a l JBoss code commented by PEL

42 //// re t urn getNext ( ) . invoke ( in v ocat ion ) ;

43

44 // //PEL code f o r i n t e g r a t i o n with COMPAS

45

46 // c a l l preMethodInvocation only i f t h i s in v ocat ion i s not f o r a remove operat ion
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47 // i f method name ! = remove

48 i f ( ! isRemove ) {

49

50 //method pre−invoke

51 proxyImpl . preMethodInvocation ( ) ;

52

53 }// i f

54

55 //get the r e s u l t returned by the next i n t e r c e p t o r in the chain

56 re t urn ed Obj ect = getNext ( ) . invoke ( in v ocat ion ) ;

57

58 // c a l l postMethodInvocation only i f method name ! = remove

59 i f ( ! isRemove ) {

60

61 //method post−invoke

62 proxyImpl . postMethodInvocation ( methodName ) ;

63

64 }// i f

65

66 //re t urn the in v ocat ion r e s u l t

67 re t urn re t urn ed Obj ect ;

68

69 // //end PEL code

70

71 }//invoke

72

73

74 }//L ogIn t ercept or

A.2 JBoss Integration with AQuA J2EE

JBoss was instrumented in order to send monitoring events to AQuA J2EE. The in-

strumentation approach was similar to the ne taken for integrating JBoss with COM-

PAS, as presented in the previous section. Namely, JBoss’s LogInterceptor class (i.e.

org.jboss.ejb.plugins.LogInterceptor) was modified so as to send method in-

vocation and response events to AQuA J2EE, more precisely to instances of the RGManager

class. The JBoss LogInterceptor create()method was modified to obtain an instance

of the RGManager class (Listing A.2, lines 1-84). The LogInterceptor invokeHome

and invoke methods were modified to send monitoring events on intercepted methods to

the associated RGManager instance A.2, lines 90-175 and 178-212, respectively). The instru-

mentation code is explained through the inserted implementation comments.

Listing A.2: Instrumenting JBoss LogInterceptors to

send monitoring events to AQuA J2EE
1 publ ic void c r e a t e ( ) throws Except ion{

2

3 ////JBoss o r i g i n a l code

4 super . s t a r t ( ) ;

5

6 ////PEL added code

7
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8 //get metadata on the new con t a in er being creat ed and

9 // on i t s managed EJB component

10 md = getContainer ( ) . getBeanMetaData ( ) ;

11 ejbClassName = md. ge t E j bClass ( ) ;

12 ejbName=md. getEjbName ( ) ;

13 jndiName=md. getJndiName ( ) ;

14

15 //f in d out whether t h i s i s a s t a t e f u l con t a in er

16 // ( S t a t e f u l Sess ion con t a in er )

17 i s S t a t e f u l S e s s i o n C o n t a i n e r = t h i s . i s S t a t e f u l l C o n t a i n e r ( ) ;

18

19 ////code f o r c r e a t i n g a l o c a l AQuA J2EE framework i n s t a n c e f o r t h i s EJB component

/con t a in er

20

21 //check i f RGManager f o r t h i s component e x i s t s

22 //get the s i n g l e t o n RGManagersAdministrator i n s t a n c e

23 RGManagersAdministrator admin = RGManagersAdministrator .

getRGManagersAdministrator ( ) ;

24 //get the RG name of the RGManager i n s t a n c e t h a t manages t h i s component

25 // ( given the component JNDI name )

26 S t r i n g rgName = admin . getRGManagerName( jndiName ) ;

27 i f ( n ul l ! = rgName ) {//a RGManager i n s t a n c e already e x i s t s f o r t h i s component

28

29 //get the RGManager i n s t a n c e f o r t h i s component

30 t h i s . rgManager = admin . getRGManagerInstance ( rgName ) ;

31 // v e r i f y i f t h i s RGManager i s c u r r e n t l y a c t i v e

32 t h i s . isManaging = rgManager . i s A c t i v e ( ) ;

33

34 i f ( n ul l == t h i s . rgManager ) {

35

36 //should NOT happen => warning message

37 //messages = warning messages . . . .

38 //MessagePrinter . printWarning ( t h i s , ” c r e a t e ” , messages ) ;

39

40 // i n s t a n t i a t e a RGManager

41 t h i s . rgManager = t h i s . instantiateRGManger ( jndiName , ejbClassName ) ;

42 t h i s . isManaging = rgManager . i s A c t i v e ( ) ;

43 i f ( t h i s . isManaging ) {

44 t h i s . t i m e r E x t r a c t i o n S t r a t e g y = rgManager . ge t T im eE xt ract ion St ra t egy ( ) ;

45 t h i s . isTimeInNanos = t h i s . t i m e r E x t r a c t i o n S t r a t e g y . inNanos ( ) ;

46 }

47 }// i f

48 e l s e {// => t h i s . rgManager ! = n ul l

49 //v e r i f y i f t h i s RGManager should be a c t i v e

50 t h i s . isManaging = rgManager . i s A c t i v e ( ) ;

51 i f ( t h i s . isManaging ) {

52 t h i s . t i m e r E x t r a c t i o n S t r a t e g y = rgManager . ge t T im eE xt ract ion St ra t egy ( ) ;

53 t h i s . isTimeInNanos = t h i s . t i m e r E x t r a c t i o n S t r a t e g y . inNanos ( ) ;

54 }

55 }

56

57

58 }// i f − RGManager i n s t a n c e e x i s t s

59

60 e l s e {

61 // => NO RGManager i n s t a n c e e x i s t s f o r t h i s component

62 // => c r e a t e a RGManager i n s t a n c e

63
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64 // i n s t a n t i a t e RGManager , using :

65 // j n d i name of the managed EJB component − unique i d e n t i f i e r

66 // c l a s s of the managed EJB − used to get the monitored methods

67 t h i s . rgManager = t h i s . instantiateRGManger ( jndiName , ejbClassName ) ;

68 //determine i f t h i s i s should be an a c t i v e RGManager

69 t h i s . isManaging = t h i s . rgManager . i s A c t i v e ( ) ;

70 i f ( t h i s . isManaging ) {

71 t h i s . t i m e r E x t r a c t i o n S t r a t e g y = rgManager . ge t T im eE xt ract ion St ra t egy ( ) ;

72 t h i s . isTimeInNanos = t h i s . t i m e r E x t r a c t i o n S t r a t e g y . inNanos ( ) ;

73 }// i f

74

75 }// e l s e

76

77

78 //end PEL added code

79

80 //JBoss o r i g i n a l code

81 ejbName = md. getEjbName ( ) ;

82 ca l lL oggin g = md. ge t Con t a in erCon figurat ion ( ) . getCallLogging ( ) ;

83

84 }//end c r e a t e

85

86 //

87 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

88 //

89

90 publ ic Object invokeHome ( In v ocat ion in v ocat ion ) throws Except ion{

91

92 ////JBoss o r i g i n a l code

93 // . . .

94

95 ////PEL added code f o r i n t e r c e p t i n g messages and c o l l e c t i n g monitoring data

96

97 long methodResponseTime = 0 ;

98 double methodResponseTimeMillis = 0 ;

99 long methodInvocationTime = 0 ; // i n s t a n c e in time when a method i s being c a l l e d

100 long methodInvocationCompletedTime = 0 ; //i n s t a n c e in time when a method re t urn s

101

102 // v e r i f y t h a t t h i s con t a in er has an act iv e , non−n ul l RGManager i n s t a n c e

103 // a s s o c i a t e d with i t

104 i f ( ( t h i s . isManaging ) && ( n ul l ! = t h i s . rgManager ) ) {

105

106 //get the curren t time

107 methodInvocationTime = t h i s . t i m e r E x t r a c t i o n S t r a t e g y . getCurrentTime ( ) ;

108 // s i g n a l the method in v ocat ion event to the a s s o c i a t e d RGManager i n s t a n c e

109 // send the JNDI name of t h i s component and the Method invoked

110 t h i s . rgManager . methodInvoked ( t h i s . jndiName , in v ocat ion . getMethod ( ) ) ;

111

112 }

113

114 // o r i g i n a l JBoss code , commented and modified by PEL

115 //re t urn getNext ( ) . invokeHome ( in v ocat ion ) ;

116

117 // v e r i f y t h a t t h ere i s no hot−swapping being c a r r i e d out at the moment

118 i f ( f a l s e == Container . isHotSwapping ) {

119

120 //get the response from the next i n t e r c e p t o r down the con t a in er i n t e r c e p t o r

chain
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121 Object objAux = getNext ( ) . invokeHome ( in v ocat ion ) ;

122

123 i f ( ( t h i s . isManaging ) && ( n ul l ! = t h i s . rgManager ) ) {

124 //get the curren t time

125 methodInvocationCompletedTime =

126 t h i s . t i m e r E x t r a c t i o n S t r a t e g y . getCurrentTime ( ) ;

127 // c a l c u l a t e the method response time

128 methodResponseTime =

129 methodInvocationCompletedTime − methodInvocationTime ;

130 //convert the response time in m il l i secon d s

131 methodResponseTimeMillis =

132 t h i s . ge t T im ePer iod In Mil l i s ( methodResponseTime ) ;

133

134 // s i g n a l the method in v ocat ion completion event to the RGManager i n s t a n c e

a s s o c i a t e d

135 //send the JNDI name of t h i s component , the invoked Method and the

response time

136 t h i s . rgManager . methodInvocationCompleted ( t h i s . jndiName ,

137 in v ocat ion . getMethod ( ) , methodResponseTimeMillis ) ;

138 }

139

140 //re t urn the method in v ocat ion r e s u l t

141 re t urn objAux ;

142

143 }

144

145 //in case the con t a in er i s execut ing a hot−swapping operat ion

146 e l s e { //t rue == L ogIn t ercept or . delayRequests

147 i f ( t h i s . i s S t a t e f u l S e s s i o n C o n t a i n e r ) {// t h i s con t a in er manages a s e s s i o n bean

148

149 //induce delays u n t i l hot−swap i s complete

150 while ( t rue == Container . isHotSwapping ) {

151 Thread . s leep ( 1000 ) ; //[ms]

152 }//while

153

154 //hot−swap i s complete at t h i s point

155

156 }// i f

157

158 Object objAux = getNext ( ) . invokeHome ( in v ocat ion ) ;

159

160 i f ( ( t h i s . isManaging ) && ( n ul l ! = t h i s . rgManager ) ) {

161 methodInvocationCompletedTime = t h i s . t i m e r E x t r a c t i o n S t r a t e g y .

getCurrentTime ( ) ;

162 methodResponseTime = methodInvocationCompletedTime − methodInvocationTime

;

163 methodResponseTimeMillis = t h i s . ge t T im ePer iod In Mil l i s ( methodResponseTime

) ;

164

165 t h i s . rgManager . methodInvocationCompleted ( t h i s . jndiName , in v ocat ion .

getMethod ( ) , methodResponseTimeMillis ) ;

166 }

167

168 re t urn objAux ;

169

170 }// e l s e

171

172 //end PEL added code
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173

174 }//end invokeHome

175

176 //

177 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

178 //

179

180 publ ic Object invoke ( In v ocat ion in v ocat ion ) throws Except ion{

181

182 ////JBoss o r i g i n a l code

183 // . . .

184

185 ////PEL added code to i n t e r c e p t messages and c o l l e c t monitoring data

186 double methodResponseTimeMillis = 0 ;

187 long methodResponseTime = 0 ;

188 long methodInvocationTime = 0 ; // i n s t a n c e in time when a method i s being c a l l e d

189 long methodInvocationCompletedTime = 0 ; // i n s t a n c e in time when a method re t urn s

190

191 i f ( ( t h i s . isManaging ) && ( n ul l ! = t h i s . rgManager ) ) {

192

193 t h i s . rgManager . methodInvoked ( t h i s . jndiName , in v ocat ion . getMethod ( ) ) ;

194 methodInvocationTime = t h i s . t i m e r E x t r a c t i o n S t r a t e g y . getCurrentTime ( ) ;

195 //forward method in v ocat ion on the next i n t e r c e p t o r and get the response

196 Object objAux = t h i s . getNext ( ) . invoke ( in v ocat ion ) ;

197

198 methodInvocationCompletedTime = t h i s . t i m e r E x t r a c t i o n S t r a t e g y . getCurrentTime ( )

;

199 methodResponseTime = methodInvocationCompletedTime − methodInvocationTime ;

200 methodResponseTimeMillis = t h i s . ge t T im ePer iod In Mil l i s ( methodResponseTime ) ;

201

202 t h i s . rgManager . methodInvocationCompleted ( t h i s . jndiName , in v ocat ion . getMethod

( ) ,

203 methodResponseTimeMillis ) ;

204

205 //re t urn the method in v ocat ion response

206 re t urn objAux ;

207 }

208 e l s e {// t h i s i s not a managing i n t e r c e p t o r con t a in er => use o r i g i n a l JBoss code

209 // o r i g i n a l JBoss code :

210 re t urn getNext ( ) . invoke ( in v ocat ion ) ;

211 }

212

213 ////end PEL added code

214 }

An additional application was implemented to collect workload information from servlet com-

ponents executing on JBoss. The JBoss distribution used in the experimental work was inte-

grated with the Tomcat Web server to provide support for servlet components. JBoss’s JMX

infrastructure was used to extract runtime information on the incoming servlet requests. This

data was used to calculate workloads on the tested applications’ web tiers and compare it with

workloads measured on the EJB application tier. The implementation code for obtaining this

information is provided in Listing A.3 and explained through the inline comments.
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Listing A.3: Obtaining servlet workload information

via JBoss’s JMX infrastructure
1 package monitoring ;

2

3 import j av a . u t i l . P r o p e r t i e s ;

4 import j av ax . management . ObjectName ; //from : jmx−b a s i c . j a r

5 import j av ax . management . j 2 e e . s t a t i s t i c s . T i m e S t a t i s t i c ; // j boss−c l i e n t . j a r , j boss−j s r 7 7

. j a r

6 import j av ax . naming . I n i t i a l C o n t e x t ; //jmx−b a s i c . j a r

7 import j av ax . naming . Context ;

8 import org . j b o s s . jmx . adaptor . rmi . RMIAdaptor ; //jmx adaptor plugin . j a r

9 import org . j b o s s . management . j 2 e e . s t a t i s t i c s . S e r v l e t S t a t s I m p l ;

10

11 // . . .

12

13 publ ic c l a s s Serv le t Mon i tor {

14

15 p r i v a t e s t a t i c f i n a l S t r i n g PROVIDER URL = ”ada−d e l l . pel . eeng . dcu . i e ” ;

16 p r i v a t e s t a t i c f i n a l S t r i n g SERVLET NAME = ” j b o s s . management . l o c a l :

J2EEApplicat ion

17 =3 statefulDukesBank . ear , J2EEServer=Local ,

18 WebModule=web−c l i e n t . war , j2eeType= Serv le t , name=Dispatcher ” ;

19

20 p r i v a t e RMIAdaptor serv er = n ul l ;

21 p r i v a t e ObjectName objName = n ul l ;

22

23 // c o n s t r u c t o r

24 publ ic Serv le t Mon i t or ( ) {

25

26 t r y {

27 // s e t the i n i t i a l con t ext p r o p e r t i e s

28 P r o p e r t i e s props = new P r o p e r t i e s ( ) ;

29 props . se t Propert y ( Context . INITIAL CONTEXT FACTORY,

30 ”org . jnp . i n t e r f a c e s . NamingContextFactory” ) ;

31 props . se t Propert y ( Context . PROVIDER URL, Serv le t Mon i tor . PROVIDER URL ) ;

32 props . se t Propert y ( ” j av a . naming . f a c t o r y . ur l . pkgs” ,

33 ” org . j b o s s . naming : org . jnp . i n t e r f a c e s ” ) ;

34

35 // c r e a t e the i n i t i a l con t ext with the s e t p r o p e r i t e s

36 I n i t i a l C o n t e x t i n i t C t x = new I n i t i a l C o n t e x t ( props ) ;

37

38 //lookup the t arge t ed RMIAdaptor i n s t a n c e in the i n i t i a l con t ext

39 serv er = ( RMIAdaptor ) i n i t C t x . lookup ( ”jmx/rmi/RMIAdaptor” ) ;

40 // c r e a t e the o b j e c t name f o t the t arge t ed s e r v l e t to be monitored

41 objName = new ObjectName ( Serv le t Mon i t or . SERVLET NAME ) ;

42 }

43 cat ch ( Except ion ex ) {

44 . . .

45 }

46 }//end c o n s t r u c t o r

47

48

49 //re t urn s the number of request s rece iv ed by the monitored s e r v l e t

50 publ ic long getServletRequestCount ( ) {

51

52 long servletRequestCount = 0 ;

53 t r y {
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54 //get the s t a t i s t i c s i n f o on the t arge t ed monitored s e r v l e t

55 S e r v l e t S t a t s I m p l s t a t s = ( S e r v l e t S t a t s I m p l ) serv er . g e t A t t r i b u t e ( objName ,

” S t a t s ” ) ;

56 //get the time s t a t i s t i c s from the gen era l s e r v l e t s t a t i s t i c s

57 T i m e S t a t i s t i c t i m e S t a t i s t i c = s t a t s . getServiceTime ( ) ;

58

59 //get the s e r v l e t request count from the time s t a t i s t i c s

60 servletRequestCount = t i m e S t a t i s t i c . getCount ( ) ;

61

62 }

63 cat ch ( Except ion ex ) {

64 . . .

65 }

66

67 //re t urn the s e r v l e t request count

68 re t urn servletRequestCount ;

69

70 }//end getServletRequestCount

71

72 //example of how to use the Serv le t Mon i t r c l a s s f o r g e t t i n g the s e r v l e t request count

:

73 // publ ic s t a t i c void main ( S t r i n g [ ] args ) {

74 // Serv le t Mon i tor monitor = new Serv le t Mon i t or ( ) ;

75 // monitor . getServletRequestCount ( ) ;

76 // }

77

78 }//end Serv le t Mon i tor c l a s s

A.3 JBoss Instrumentation for

EJB Component-Swapping

JBoss was modified to support dynamic swapping of EJB components, without necessi-

tating functional interruptions. The JBoss hot-swapping functionality was used as part

of this goal. However, the available JBoss implementation did not support swapping

of EJBs while under heavy user loads (section 4.7). JBoss EJB containers (e.g. the

org.jboss.ejb.Container and org.jboss.ejb.EntityContainer classes)

were modified to solve the existing issues and support runtime swapping of EJB components

(Listing A.4). The implemented strategy is described in section 4.7 and explained via inline

comments below.

Listing A.4: instrumenting JBoss for component-swapping support
1 //// org . j b o s s . e j b . Container c l a s s

2 //PEL v a r i a b l e s

3 publ ic s t a t i c f i n a l S t r i n g STATELESS SESSION CONTAINER TYPE = ”

S t a t e l e s s S e s s i o n C o n t a i n e r ” ;

4 publ ic s t a t i c f i n a l S t r i n g STATEFUL SESSION CONTAINER TYPE = ”

S t a t e f u l S e s s i o n C o n t a i n e r ” ;

5 publ ic s t a t i c f i n a l S t r i n g ENTITY CONTAINER TYPE = ” E n t i t yCon t a in er” ;

6

7 publ ic s t a t i c boolean isHotSwapping = f a l s e ;

8 //end PEL v a r i a b l e s
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9

10 //PEL methods

11 //get s the con t a in er type : s t a t e l e s s , s t a t e f u l l or e n t i t y

12 publ ic S t r i n g getContainerType ( ) {

13 S t r i n g containerType = n ul l ;

14 containerType = t h i s . ge t Class ( ) . getName ( ) ;

15 re t urn containerType ;

16 }

17 //marks the f a c t t h a t the con t a in er i s c u r r e n t l y carry in g out a hot−swapping

operat ion

18 publ ic s t a t i c void setIsHotSwapping( boolean isHotSwapping ) {

19 Container . isHotSwapping = isHotSwapping ;

20 }

21

22 //end PEL methods

23

24 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

25

26 ////org . j b o s s . e j b . E n t i t yCon t a in er − c l a s s

27 prot ect ed void st opServ ice ( ) throws Except ion

28 {

29

30 //PEL code added f o r hot−swap

31 //waits f o r zero workload on t h i s EJB

32 // and then f l u s h e s the E n t i t y EJB cache

33

34 // t e s t i f hot−swapping i s being c a r r i e d out at the moment

35 i f ( t rue == Container . isHotSwapping ) {

36

37 i n t methodsSt i l l InUse = −1 ;

38

39 //delay the stopping a c t i o n of

40 // the con t a in er s e r v i c e

41 EntityCache cache = ( Ent ityCache ) t h i s . get InstanceCache ( ) ;

42

43 //delay the stopping the con t a in er s e r v i c e

44 //while t h ere are s t i l l EJB i n s t a n c e s

45 //in the cache

46 while ( 0 ! = cache . getCacheSize ( ) ) {

47 Thread . s leep ( 1000 ) ; //1 sec

48

49 // v e r i f y i f methods are s t i l l in use

50 methodsSt i l l InUse = t h i s . ge t Met h od sSt i l l InU se ( ) ;

51 // i f methods are not in use anymore ,

52 // then f lush the cache

53 i f ( 0 == methodsSt i l l InUse ) {

54 //delay 1 sec

55 Thread . s leep ( 1000 ) ;

56 cache . f lush ( ) ;

57 }

58 }//while

59

60 //f lush the cache

61 cache . f lush ( ) ;

62 cache = n ul l ;

63 }// i f

64

65 //JBoss o r i g i n a l code f o r stopping the con t a in er s e r v i c e
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66 // . . .

67

68 }//end st opServ ice

69

70 //////PEL defined methods

71

72 // v e r i f i e s methods ’ loads to determine i f the methods are s t i l l in use

73 //re t urn s 0 i f no methods are in use

74 p r i v a t e i n t ge t Met h od sSt i l l InUse ( ) {

75 //get the monitored methods of t h i s EJB component

76 //asks the RGManagerAdministrator using the component name

77 // . . .

78

79 //get the RGManager and MonitorDataDispatcher i n s t a n c e s f o r t h i s component

80 // . . .

81

82 //f o r each monitored method , get the MonitoringDataHandler i n s t a n c e

83 //use i t to v e r i f y the method load

84 // . . .

85

86

87 }// get Met h od sSt i l l InU se

88

89 //−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

90

91 ////org . j b o s s . e j b . EJBDeployer − c l a s s

92

93 //PEL modified methods

94

95 publ ic void stop ( DeploymentInfo di )

96 throws DeploymentException{

97

98 //PEL added code

99 //s e t the con t a in er isHotSwapping f l a g to t rue

100 org . j b o s s . e j b . Container . setIsHotSwapping ( t rue ) ;

101 //end PEL added code

102

103 //JBoss o r i g i n a l code f o r stopping the s e r v i c e

104 // . . .

105

106 }//end stop

107

108

109 publ ic synchronized void s t a r t ( DeploymentInfo di )

110 throws DeploymentException {

111

112 //JBoss o r i g i n a l code f o r s t a r t i n g the s e r v i c e

113 // . . .

114 //end of JBoss o r i g i n a l code

115

116 //PEL added code

117 //s e t the con t a in er isHotSwapping f l a g to f a l s e

118 org . j b o s s . e j b . Container . setIsHotSwapping ( f a l s e ) ;

119 //end PEL added code

120

121 }//end s t a r t
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APPENDIX

B

JBoss Configuration for

Experimental Work

B.1 JBoss Configurations for EJB Containers

EJB containers are software entities that manage EJB instances at runtime. In JBoss, a con-

tainer is an instance of the org.jboss.ejb.Container class. JBoss crates one separate

container instance for each separate EJB configuration that is deployed. The EJBDeployer

MBean manages the creation of the container instance.

JBoss externalises most of the EJB container setup, allowing for most of the container proper-

ties to be configured and customised. Such properties include the interceptors to use in the

interceptor chain, as well as security, persistence, transaction policy, caching and pooling con-

figurations. xml files are used for specifying the EJBs container configurations. The correct

xml format for container configuration files is specified in a standard .dtd file, specific to the

JBoss server. For example, xml container configuration files for JBoss 3.2.X must conform to

the format specified in the standard jboss 3 2.dtd file. The .dtd file also provides the

full list of configurable parameters for JBoss containers. A detailed description of EJB contain-

ers and their configuration in JBoss is available from section 4.1. This subsection details the

caching and pooling configurations of JBoss EJB containers.

In JBoss, EJB containers are configured via container configuration files, in XML format. Con-

tainer configurations can be made at two different levels. First, global, or default-level configu-

rations can be specified for all instantiated containers. Such standard container configurations

are performed via the standardjboss.xml file. Second, local-level configurations can

also be made, specifically for each deployed EJB application. Such local container configura-

tions are performed via the jboss.xml file. The local configuration file is archived together

with the application files into a deployable application bundle (e.g., a EJB.jar application

archive).

In the performed experimental tests, separate container configurations were specified for the

individual EJBs involved. The corresponding jboss.xml files were used for this purpose

to individually configure the various EJB components tested. Codes B.1 and B.2 exemplify a

jboss.xml configuration file used to customise EJB containers. The example shows JBoss-

specific configurations of two EJBs from the Duke’s Bank Application (Section C), namely the
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Account Entity EJB and the AccountController Stateful Session EJB.

Code B.1 shows the way customised containers can be specified to manage individual EJBs.

Code B.2 subsequently shows the configurable elements that can be used to customise EJB

containers with respect to caching and pooling functions.

Listing B.1: jboss.xml – enterprise beans configuration example

1 <j b o s s>

2

3 <e n t e r p r i s e−beans>

4

5 <e n t i t y>

6 <e jb−name>AccountEJB</ejb−name>

7 <j n d i−name>MyAccount</j n d i−name>

8 <con f igurat ion−name>

9 Custom Cache INSERT after e jbPostCreate Container

10 </con f igurat ion−name>

11 <e jb−r e f>

12 <e jb−re f−name>e j b/customer</ejb−re f−name>

13 <j n d i−name>MyCustomer</j n d i−name>

14 </ejb−r e f>

15 <resource−r e f>

16 <res−re f−name>jdbc/BankDB</res−re f−name>

17 <j n d i−name> j a v a :/DefaultDS</j n d i−name>

18 </resource−r e f>

19 </ e n t i t y>

20

21 < !−− . . . other e n t e r p r i s e bean d e c l a r a t i o n s . . . −−>

22

23 <e n t e r p r i s e−beans>

24

25 <!−− . . . other d e c l a r a t i o n s . . . −−>

26

27 </ j b o s s>

Listing B.2: jboss.xml – custom container configuration example

1 <con t a in er−c o n f i g u r a t i o n s>

2

3 <con t a in er−c o n f i g u r a t i o n extends=” Standard CMP 2 . x Ent ityBean”>

4 <con t a in er−name>

5 Custom Cache INSERT after e jbPostCreate Container

6 </con t a in er−name>

7 <i n s e r t−a f t e r−e jb−post−c r e a t e>

8 t rue

9 </ i n s e r t−a f t e r−e jb−post−c r e a t e>

10 <in s t an ce−cache>

11 org . j b o s s . e j b . plugins . In v al id ab leE n t i t y I n s t a n c eC ac h e

12 </in st an ce−cache>

13

14 <con t a in er−cache−conf>

15 <cache−pol icy>

16 org . j b o s s . e j b . plugins . LRUEnterpriseContextCachePolicy

17 </cache−pol icy>

18 <cache−policy−conf>

19 <min−capaci t y>10</min−capaci t y>

20 <max−capaci t y>1000000</max−capaci t y>
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21 <overager−period>10</overager−period>

22 <max−bean−age>10</max−bean−age>

23 <r e s i z e r −period>10</ r e s i z e r−period>

24 <max−cache−miss−period>60</max−cache−miss−period>

25 <min−cache−miss−period>1</min−cache−miss−period>

26 <cache−load−f a c t o r>0 . 7 5</cache−load−f a c t o r>

27 </cache−policy−conf>

28 </con t a in er−cache−conf>

29

30 <con t a in er−pool−conf>

31 <MinimumSize>10</MinimumSize>

32 <MaximumSize>100</MaximumSize>

33 <s t r i c t T i m e o u t>600000</s t r i c t T i m e o u t>

34 </con t a in er−pool−conf>

35

36 <commit−option>A</commit−option>

37

38 </con t a in er−c o n f i g u r a t i o n>

39

40 < !−− . . . other con t a in er c o n f i g u r a t i o n s . . . −−>

41

42 </con t a in er−c o n f i g u r a t i o n s>

The main elements that are used to specify EJB configurations in custom jboss.xmldeploy-

ment descriptors are briefly explained below. The following elements are used to specify an

EJB component in the deployment descriptor file:

• <ejb-name>: the name used to refer to this EJB. (Note: this name must match the

ejb-name used for this EJB in the ejb-jar.xml file).

• <jndi-name>: the name assigned to this EJB in the JNDI directory.

• <configuration-name>: the name of the customised container to be used for

managing this EJB.

• <resource-ref>: information on any resources that this EJB needs to use. For ex-

ample, the AccountEJB EJB uses a database resource named "jdbc/BankDB" and

with the jndi name "java:/DefaultDS".

• <ejb-ref>: information on any other EJBs that this EJB needs to use. For example,

the AccountControllerEJB EJB uses two other EJBs, as follows. The first EJB is

named "ejb/account" and is registered with the JNDI directory under the name

"MyAccount". (Note: The jndi-name value in the ejb-ref field must match the

jndi-name of the referred EJB.) The second used EJB is named "ejb/customer"

and registered with the JNDI directory under the name "MyCustomer".

In the jboss.xml file, each EJB can be configured to be managed by a customised container

(code B.2). The main container configuration elements are described over the following para-

graphs.

The <container-configurations> element is used to encompass the definitions of all

customised containers.

The <container-configuration> element is used to describe a customised container

configuration. It includes specifications for all plugins that the customised container is to use,
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as well customised configurations for these plugins. As such, each container configuration can

specify the container’s default invoker type, interceptor makeup, instance cache and instance

pool settings, persistence manager, or security. It is possible for a container configuration to

be specified starting from an existing configuration. Specifically, a container configuration can

have an ’extends’ attribute, indicating the name of the container being extended by the

currently defined container. The example in code B.2 shows the main configurations elements

used to customise the caching, polling and commit policies of EJB containers on JBoss. A simi-

lar EJB container configuration was used for experiments on Duke’s Bank example (appendix

C and section 5.2). These elements are briefly discussed over the following paragraphs.

The <container-name> element specifies the name of the customised container. The con-

tainer name is used in the EJB components’ configurations to indicate the customised container

that is to manage the configured EJBs.

The <instance-cache> element indicates the fully-qualified class

name of the org.jboss.ejb.InstanceCache interface implementa-

tion. Clearly, this element is only meaningful for cacheable EJB types

(i.e. Entity and Stateful Session Beans). In the example in code B.2, the

org.jboss.ejb.plugins.InvalidableEntityInstanceCache class was

set for the cache instance. This setting allows deployers to provide customised implementa-

tions of the JBoss container caching functionality.

The <container-cache-conf> element indicates the caching policy and associated pol-

icy configurations to be used for the utilised caching implementation. In the example in Figure

B.2, the org.jboss.ejb.plugins.LRUEnterpriseContextCachePolicy was

used. The particular caching configuration for this policy is subsequently presented, as

part of the <cache-policy-conf> element. Another possible cache policy is the

org.jboss.ejb.plugins.NoPassivationCachePolicy, which never passivates

instances. This second policy does not support the <cache-policy-conf> configuration

element.

The <cache-policy-conf> element specifies the configuration parameters for the par-

ticular container cache used. Thus, each caching policy configuration will be specific to

the particular caching implementation used. For example, the following cache parame-

ters can be configured for the LRUEnterpriseContextCachePolicy caching pol-

icy. The <min-capacity> sub-element is used to indicate the minimum cache capac-

ity. Similarly, the <max-capacity> element indicates the maximum cache capacity,

which must be greater than or at least equal to the cache min-capacity value. The

<overager-period> sub-element specifies the period (in seconds) between runs of the

overager task. The purpose of the overager task is to see if the cache contains EJB instances

with an age greater than the max-bean-age element value. Any beans meeting this cri-

terion will be passivated. A cache’s max-bean-age represents the maximum period (in

seconds) that an inactive EJB instance is kept in the cache. After being inactive for more

than the max-bean-age period, the EJB instance will be passivated by the overager pro-

cess. The <max-bean-age> sub-element is used to configure this caching policy element.

The <resizer-period>sub-element specifies the period (in seconds) between succeeding

runs of the resizer task. The purpose of the resizer task is to contract or expand the cache ca-

pacity, based on various cache-miss related configurations. The <remover-period> sub-
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element sets the period (in seconds) between subsequent runs of the remover task. The remover

task removes passivated beans that have not been accessed in more than max-bean-life

seconds. This task prevents Stateful Session Beans that were not removed by users from filling-

up the passivation store. Finally, the <max-bean-life> sub-element sets the maximum

inactivity period (in seconds) for an EJB instance before being removed from the passivation

store.

A similar set of configuration elements are used to customise the EJB container instance pools,

as follows.

The <instance-pool> element specifies the fully-qualified class name of an

org.jboss.ejb.InstancePool interface implementation to use as the container

InstancePool. This parameter was not specifically set in the example in code B.2.

Consequently, the customised container used the default instance pool class, as inherited

from the standard JBoss container. The standard instance pool implementation used was

subsequently customised based on the specific configuration elements available. The

<container-pool-conf> element specifies the configuration parameters for the

container instance pool. The instance pool parameters that could be configured are briefly

described next. The <MinimumSize> sub-element indicates the minimum number of

EJB instances to be kept in the pool. (Note: the JBoss 3.2.5 version used did not initialise

an InstancePool with the MinimumSize number of EJB instances, upon container

instantiation). Similarly, the <MaximumSize> sub-element specifies the maximum number

of EJB instances that are allowed in the pool. Normally, the MaximumSize represents the

maximum number of EJB instances that are kept available. Nonetheless, additional instances

will be created if the number of concurrent client requests exceeds the MaximumSize

value. The <strictMaximumSize> sub-element must be used in order to limit the

maximum concurrency of an EJB. Setting the strictMaximumSize element to true causes

the instance pool to be strictly limited to the MaximumSize capacity value. In this case,

only MaximumSize EJB instances may be active at anyone time. When the number of

MaximumSize active instances has been reached, any subsequent requests are blocked until

an instance is freed and returned in the instance pool. Finally, the <strictTimeout>

pooling configuration sub-element indicates the time (in milliseconds) for which a request

should block and wait for an EJB instance to become available in the pool. This parameter

is meaningful when a strictMaximumSize pooling policy is used and the maximum

number of EJB instances has already been reached in the pool. A strictTimeout value

can be specified to be less than (or equal to) zero, in order to configure requests not to wait

for EJB instances. In case a request times-out while waiting for an available EJB instance, an

exception is thrown and the call is aborted.

Several commit options are available to specify the manner in which an EJB container will syn-

chronise with the persistence storage used. In JBoss, this parameter can be configured via the

<commit-option>element, with the possible commit values of A, B,C or D. The associated

commit option policies are briefly described as follows (JBoss 3.2.5 - documentation). The com-

mit option configuration used can have a significant impact on the application’s performance

as well as on its correctness and reliability characteristics. The set commit option configuration

should be selected based on the predicted usage pattern of the targeted EJB component.

When commit-optionA is used, the container caches the EJB instances’ state between sub-
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sequent transactions. This option assumes that the container is the only client accessing (or

modifying) the persistent store. This assumption allows the container to synchronize the in-

memory state from the persistent storage only when absolutely necessary. This occurs before

the first business method executes on a found bean or after the bean is passivated and reacti-

vated to serve another business method. This behaviour is independent of whether or not the

business method executes inside a transactional context.

When commit-option B is used, the container caches the EJB instances’ state between subse-

quent transactions. However, unlike option A, the container does not assume exclusive access

to the persistent store. Therefore, the container will synchronize the in-memory (or cached)

state at the beginning of each transaction.

When commit-option C is used, the container does not cache EJB instances. The in-memory

state is synchronized on every transaction start.

The commit-option D is a JBoss-specific feature, not available in the standard EJB specifica-

tion. It is a lazy-read scheme where the EJB instance state is cached between transactions

(as with option A), but the state is periodically resynchronized with that of the persistent

store. The default time between reloads is 30 seconds, but may be configured using the

<optiond-refresh-rate> element.

B.2 JBoss Configurations for Database Persis-

tence

The Hypersonic and MySQL databases were used for testing the Duke’s Bank application. Hy-

personic is an embedded database provided by JBoss. It was used for preliminary, functional

testing, where the database could be collocated with the JBoss server. The reported experi-

mental results (chapter 5) were obtained by testing Duke’s Bank on a distributed deployment

platform, where the JBoss server and the databases where running on different machines (sec-

tion 5.2.5). The MySQL database was used in the thesis experimental tests to provide per-

sistent storage for the Duke’s Bank application. Special-purpose xml files must be used to

configure JBoss to work with a certain targeted database (e.g. hsqldb-ds.xml for the Hy-

personic DB and mysql-ds.xml for the MySQL DB). The xml database configuration file

allows the specification of the database location and access configurations. The database pa-

rameters specified in this file are described below. The parameter values indicated were used

to configure the MySQL DB for the performed experimental tests on the Duke’s Bank (code

B.3).

The <jndi-name> element is used to identify each particular database configuration (e.g.

DefaultDS). This name must be subsequently used for referring to a certain targeted

database.

The <connection-url> element indicates the url string for the connection JDBC driver.

This parameter was set to point to the remote server used to run the MySQL database

(i.e. jdbc:mysql://10.10.105.146:3306/DukesBankDB). This setting configures

JBoss to use the MySQL database on a remote server, identified by the respective IP address,

port and database name. This configuration is consistent with typical deployment scenarios,
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in which the database and the application server are installed on different stations.

The <min-pool-size> element indicates the minimum number of connections that a

database connection pool should hold. The minimum number of connections is lazily loaded

upon the first call for a connection. A minimum of 50 connections was set for the connection

pool. Similarly, the <max-pool-size> element sets the maximum number of connections

the database connection pool holds. This is the maximum number of database connection that

will be created in the pool. A maximum of 100 connections was set for the database connection

pool. Finally, the <blocking-timeout-millis> element indicates the maximum time

(in milliseconds) to wait for a database connection to become available. In case a connection

does not become available after this set time, an exception is thrown. The actual time needed

to create a database connection is not included in this period. The blocking timeout parameter

was set to 1200,000 ms, or 20 minutes.

Listing B.3: mysql-ds.xml – datasource specification example

1 <?xml v ers ion=” 1 . 0 ” encoding=”UTF−8” ?>

2

3 <datasources>

4

5 <l o c a l−tx−datasource>

6 <j n d i−name>DefaultDS</j n d i−name>

7 <!− connect to DB on: server−ibm−113. pel . eeng . dcu . i e −−>

8 <connect ion−url>j d b c : m y s q l : //10 . 10 . 105 . 1 4 6 : 3306 /DukesBankDB</connect ion−url>

9 <driver−c l a s s>com . mysql . jdbc . Driver</driver−c l a s s>

10 <t r a n s a c t i o n−i s o l a t i o n>

11 TRANSACTION READ UNCOMMITTED

12 </ t r a n s a c t i o n−i s o l a t i o n>

13 <user−name>root</user−name>

14 <password></password>

15 <min−pool−s i z e>50</min−pool−s i z e>

16 <max−pool−s i z e>100</max−pool−s i z e>

17 <blocking−t imeout−m i l l i s>1200000</blocking−t imeout−m i l l i s> <!−− 20 min −−>

18 </ l o c a l−tx−datasource>

19

20 </datasources>

B.3 JBoss Web Server Configurations

The Tomcat Web server was used for deploying and running the web-related components of

Duke’s Bank application (i.e. jsp files and servlet components). The utilised JBoss server distri-

bution provided an embedded version of the Tomcat web server. The bundled Tomcat server

was configurable via the server.xml file. The following http-connector parameters

were set for the Tomcat web server for the performed tests.

The <acceptCount> element indicates the maximum number of requests accepted in the

waiting queue, when all possible request processing threads are already in use. Any process-

ing requests received when the queue is full will be refused. The accept count parameter was

set to 1000. The <connectionTimeout> element specifies the time (in milliseconds) that

the connector will wait between accepting a connection and receiving the URI line that it needs

to access. This parameter was set to 600,000 ms, or 10 minutes. The <maxThreads> element
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sets the maximum number of processing threads that should be created and used. This pa-

rameter was set to 1500. The http-connection configuration used to customise Tomcat

for the performed tests on the Duke’s Bank is shown in code B.4.

Listing B.4: server.xml – HTTP connector specification example

1 <!−− A HTTP/1.1 Connector on port 8080 −−>

2 <Connector port=” 8080 ” address=”${ j b o s s . bind . address}”

3 maxThreads=” 1500 ” minSpareThreads=”25” maxSpareThreads=”75”

4 enableLookups=” f a l s e ” r e d i r e c t P o r t=” 8443 ” acceptCount=” 1000 ”

5 connectionTimeout=” 600000” disableUploadTimeout=” t rue ”/>

In addition, the web session timeout can be set via the web.xml configuration file provided.

The default value of 30 minutes was kept for this parameter for the performed tests (code B.5).

Listing B.5: web.xml – web session configuration example

1 <sess ion−con f ig>

2 <sess ion−t imeout>30</sess ion−t imeout>

3 </sess ion−con f ig>

B.4 JBoss Server Configurations

The JBoss server services, such as security, transactions, deployment, or logging, can be con-

figured via the jboss-service.xml file, located in JBoss’s configuration directory. This

file was used to configure JBoss transactions for the performed experimental tests. More pre-

cisely, the TransactionTimeout attribute was used to set JBoss’ transaction timeout to

900 seconds (15minutes) – code B.6.

Listing B.6: jboss-service.xml – JBoss transaction configuration example

1 <mbean code=” org . j b o s s . tm . Transact ionManagerService”

2 name=” j b o s s : s e r v i c e =TransactionManager”

3 xmbean−dd=” resource :xmdesc/Transact ionManagerService−xmbean . xml”>

4

5 <a t t r i b u t e name=” TransactionTimeout ”>900</ a t t r i b u t e>

6 <depends opt ional−a t t r i b u t e−name=” XidFactory”>

7 j b o s s : s e r v i c e =XidFactory

8 </depends>

9

10 </mbean>

The maximum amount of memory available to the JBoss server was configured at the JVM

level using the ’-xms’ and ’-xmx’ java options. These options were used when starting

the JBoss application server, in order to set the available memory (e.g. modified the run.bat

file for starting JBoss on a Windows OS platform: set JAVA OPTS=%JAVA OPTS%

-Xms100m -Xmx512m).

This approach was used for some of the performed tests (section 5), in order to simulate an

execution environment with limited memory resources.
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B.5 Extending JBoss

JBoss implementation was modified and new libraries were added and utilised. JBoss was

subsequenlty configured to use these libraries when compiling its modified code, as well as

find the libraries during runtime. These procedures were necessary as the JBoss distribution

used (JBoss 3.2.5) does not support the direct addition of new libraries to its CLASSPATH (if

the JBoss classpath was modified, exceptions were raised during JBoss start-up, preventing

the server from starting).

An initial configuration was required to allow modified JBoss classes to be correctly com-

piled. The modification was needed for several JBoss classes which used implementa-

tions available from external libraries. For example, several JBoss classes were instru-

mented so as to send runtime monitoring events to the AQuA framework (e.g. JBoss

LogInterceptor instances communicate with AQuA’s RGManager instances). The

<JBoss HOME>/server/build.xml file was modified in order to allow the required

libraries to be found at JBoss compilation time (e.g. the APeMCA.jar library, containing all

AQuA’s constituent classes). Code B.7 shows the way additional pathelements were appended

to the JBoss server library path (in the server’s build.xml file), so as to indicate the location

of the additional external libraries. Modifications can be made to any of JBoss’ constituent

packages, similarly to the exemplified modifications made on the server module. In addition,

JBoss can be generally configured to recognise external libraries by adding the corresponding

pathelements into its global build.xml file (i.e. <JBoss HOME>/build/build.xml).

Listing B.7: build.xml – finding external libraries at JBoss compile time

1 <!− a d d i t i o n a l e n t r i e s : new l i b r a r i e s needed to compile the extended JBoss serv er −−>

2 <pathelement path=”C:/ L i b r a r i e s/PELJBoss/APeMCA. j a r ”/>

3 <pathelement path=”C:/ L i b r a r i e s/PELJBoss/ j boss ad apt or . j a r ”/>

4 <pathelement path=”C:/ L i b r a r i e s/PELJBoss/jmx−b a s i c . j a r ”/>

JBoss must subsequently be configured so as to find the required exter-

nal libraries during runtime. This was achieved by adding the external li-

braries (e.g. APeMCA.jar) to the JBoss’s output library directory (e.g.

<JBOSS HOME>/build/output/jboss-3.2.5/server/default/lib/APeMCA.jar).

In addition to external libraries JBoss must also be able to find any property files used by

its classes at runtime. For this purpose, the property files were added to JBoss’ working

directory, or bin directory. For example, for classes in the APeMCA.jar library, the

apemcaProperties.properties file was added to JBoss’ bin directory (i.e.

<JBOSS HOME>/build/output/jboss-3.2.5/bin/apemcaProperties.properties).
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APPENDIX

C

Duke’s Bank J2EE Application

C.1 Presentation

Duke’s Bank application is a sample J2EE application provided by Sun Microsystems. It rep-

resents an online banking application that allows customers to perform online banking oper-

ations, such as accessing account histories and performing bank transactions. Administrators

can also use Duke’s Bank application to manage customer records and accounts. Information

on customers, accounts and banking transactions is stored in a database (DB) and accessed

via Entity EJBs. Client sessions are managed via Stateful Session EJBs. The EJB components

in the application layer are accessed via web components in the presentation layer. Web com-

ponents include jsp files and servlets. Figure C.1 provides a high-level overview of the J2EE

components contained by the Duke’s Bank application and shows the way these components

interact with external clients and with the database (DB).

C.1.1 Enterprise Java Beans (EJBs) in the Duke’s Bank

The Duke Bank’s application comprises several Enterprise Java Beans (EJBs), as depicted

in Figure C.2. Three Stateful Session beans are used to handle user requests and main-

tain client sessions. These are the AccountController, CustomerController and

TxController EJBs. Three Entity beans are used to handle persistent DB data at the ap-

plication level. Each Entity bean represents one of the business entities in the Duke’s Bank.

Namely, the Customer Entity bean represents banks customers, the Account Entity bean

represents banking accounts and the Tx Entity bean represents banking transactions. Exter-

nal access to the Entity beans is mediated by the Stateful Session beans. The state of the Entity

beans is persisted into a relational database (DB), in the corresponding customer,account

and tx DB tables, respectively.
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Figure C.2: Duke’s Bank – EJBs overview
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C.1.2 Relational Database -

Persistence Support for the Duke’s Bank

A relational database (DB) was used to provide persistence support for the Duke’s Bank ap-

plication (i.e. the MySQL DB and the Hypersonic DB embedded in JBoss). The database tables

were designed so as to reflect the main business entities in the application – bank accounts,

customers, and banking transactions. These business entities are mapped to tables in the re-

lational database as follows (Figure C.3). An account table holds information on banking

accounts, a customer table holds information on the bank’s customers and a tx table holds

information on performed banking transactions. These tables are related so as to represent the

existing connections between the real business entities they represent. Thus, a many-to-one

relation exists between the transactions table (tx) and the accounts table (account). This

relation implies that many transactions can be associated with each account, but each transac-

tion can only belong to a single account. In addition, a many-to-many relation exists between

the customers table and the accounts table. This relation implies that each customer can own

many accounts and each account may belong to multiple customers. This relation is imple-

mented by an additional table (i.e. the Customer Account XRef table), which holds

records of all customer-to-account mappings.

Figure C.3: Duke’s Bank persistence – DB tables overview

C.2 Identified Exceptions and Troubleshooting

The original distribution of the Duke’s Bank application contains several bugs, which prevent

the application from running correctly or performing properly. This appendix describes the

functional bugs detected in the Duke’s Bank application. It also shows the way the original

Duke’s Bank distribution was modified so as to correct the detected faults. Several modifica-

tions made for improving the Duke’s Bank application performance are also discussed.
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C.2.1 Concurrent users not supported

Observed Symptom

Exception thrown when testing Duke’s Bank with multiple concurrent users:

ERROR [org.jboss.ejb.plugins.LogInterceptor] EJBException:

javax.ejb.EJBException: Application Error: tried to enter

Stateful bean with different tx context

Detected Problem

The original Duke’s Bank application does not support simultaneous accesses from multiple

users. In other words, the application can only be accessed by one user at a time. This is a

serious bug, as it prevents the application from being load-tested. It would be an unacceptable

limitation for a real online banking application.

Identified Cause

The reason the original Duke’s Bank was not supporting concurrent users was identified as

follows. The problem was caused by the fact that all jsp files use the same single instance

of the BeanManager JavaBean, for all client requests. This is done in the original distri-

bution by setting the scope of the BeanManager JavaBean to the ’application’ value,

in all jsp files. This means that one single instance of the BeanManager class will be used

for the entire application. At construction time, the BeanManager creates and obtains ref-

erences to instances of the Duke’s Bank AccountController,CustomerController

and TxController Stateful Session Beans. The BeanManager instance uses these ses-

sion bean instances during its entire lifecycle. Thus, all incoming calls, from all client ses-

sions, will be consequently handled using the same Stateful Session Bean instances. Instead,

for the application to function correctly, each customer session should be handled using a

separate Stateful Session Bean. Concurrent access to Stateful Session Beans is not supported

(as tested on JBoss). Consequently, an exception is usually thrown when more than one si-

multaneous users access the application: "Application Error: tried to enter

Stateful bean with different tx context".

Implemented Solution

The solution to the aforementioned problem is to ensure that Stateful Session Beans are not

concurrently accessed by multiple clients. For this purpose, the scope attribute value for the

BeanManager JavaBean was modified from ’application’ to ’session’. This mod-

ification was made in all jsp files using the BeanManager JavaBean. As a consequence of

the new setting, a separate BeanManager instance will be assigned to each different user

session, rather than per application. Thus, every distinctive user will be assigned a separate

BeanManager instance and will in effect use a separate set of Stateful Session Bean instances.

This solution was implemented as follows. The scope of the BeanManager class was
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changed from ’application’ (as in the original distribution) to ’session’, by

modifying all relevant jsp files. First, the session="true" statement was appended to

the end of the <%@page import="..." %> declaration. In the <jsp:useBean

id="beanManager" class="...BeanManager" scope="session"/>

the scope was set to ’session’ and not to ’application’ (as in the orig-

inal). The following jsp files were affected by this change: accountHist.jsp,

accountList.jsp, atm.jsp, atmAck.jsp, links.jsp, transferFunds.jsp

and transferAck.jsp (Note: in this jsp file the <%@ page ...%> clause is present

twice, so the clause session="true"was accordingly inserted twice).

In the provided solution, the scope of the BeanManager JavaBean was changed from

’application’ to ’session’. Additional modifications had to be consequently made

in order to accommodate this modification. First, the instantiation of the BeanManager

JavaBean had to be performed whenever a new http session was being created. Second, the

BeanManager instance associated with a http session has to be destroyed whenever the

session terminates and is invalidated. This is different from the original Duke’s Bank ver-

sion, in which the BeanManager was only instantiated once for the entire application and

destroyed when the application terminated. These additional modifications were performed

by implementing an additional class, the SessionListener. The SessionListener’s

role is to listen to session creation and destruction events and accordingly performs the

BeanManager instantiation and deletion operations (code C.1 below). For this purpose, the

SessionListener class implements the HttpSessionListener interface, which al-

lows it to listen to session-related events (e.g. session created, or session destroyed events),

obtain session references (e.g. event.getSession()) and set session attributes (e.g.

session.setAttribute( "beanManager", new BeanManager() )). In the

original Duke’s Bank distribution, the instantiation and removal of the BeanManager Jav-

aBean were performed only once, at application start-up and shutdown, respectively. These

functionalities were performed by the ContextListener class, which implemented the

ServletContextListener interface.

A final modification, the removal of the BeanManager instance when an http session de-

stroyed event occurs was moved from the SessionListener class to the logoff.jsp

file (code C.2 below). The reason was that in order to know which BeanManager in-

stance to destroy upon receiving a session destruction event, the actual session with which

the BeanManager instance was associated was needed. Nonetheless, this http session

did no longer exist as its termination was the one actually triggering the session destruc-

tion event. Thus, the session was already inaccessible at the point when the destruction

event was received. The BeanManager instance’s removal was consequently moved to the

logoff.jspfile. This solution is suitable for the Duke’s Bank application, since the moment

a user logs off, their client session is terminated and the associated BeanManager can safely

be removed.

Listing C.1: The SessionListener class

1 package com . sun . ebank . web ;

2 // . . .

3 publ ic c l a s s S e s s i o n L i s t e n e r

4 implements Ht t pSess ion L is t en er {

5
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6 HttpSession s e s s i o n = n ul l ;

7

8 // r e a c t to s e s s i o n c r e a t i o n events

9 // c r e a t e the BeanManager i n s t a n c e and

10 // s e t i t as an a t t r i b u t e with the new h t t p s e s s i o n

11 publ ic void sess ion Creat ed ( HttpSessionEvent event ) {

12 t h i s . s e s s i o n = event . ge t Sess ion ( ) ;

13 s e s s i o n . s e t A t t r i b u t e ( ”beanManager” , new BeanManager ( ) ) ;

14 }

15

16 // r e a c t to s e s s i o n d e s t r u c t i o n events

17 publ ic void sessionDestroyed ( HttpSessionEvent event ) {

18 // l o g i c in t h i s method was moved to the l o g o f f . j s p f i l e

19 }

20

21 }

C.2.2 Logging-off functionality broken

Observed Symptom

The original Duke’s Bank distribution throws an exception when users access the log-off func-

tionality. The following error is returned to the user when attempting to log-off Duke’s Bank:

Server Error

Your request cannot be completed. The server got the

following error: null

Identified Cause

The cause of this erroneous behaviour was identified in the logoff.jsp file. The log-off

code tries to access a client http session after already having invalidated this session. As the

user does not need their client session after logging off, the session associated with their logoff

request can be safely invalidated. Nonetheless, no attempts to access this session should be

made after that.

Implemented Solution

In the logoff.jsp file, the line that tries to access an http session that has al-

ready been removed was commented (i.e. <%-- HttpSession newSession =

request.getSession(true); --%>).
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C.2.3 Incomplete EJB passivation and activation

Detected Problem

When an EJB instance is to be passivated, all the non-serialisable instance variables must be

released before the actual passivation takes place. Examples of non-serialisable resources in-

clude DB connections and references to other EJBs. When the EJB instance is activated these

variables need to be reallocated. An EJB’s EJBpassivate and EJBactivatemethods are

used for this purpose. These operations were not properly performed in the original Duke’s

Bank distribution, potentially causing memory leaks, or general inefficient use of resources.

Implemented Solution for Passivating and Activating Stateful Session

EJBs

The original Duke’s Bank distribution was modified so as to correctly manage non-

serialisable variables during passivation and activation operations. The EJBpassivate

method was updated in the following Stateful Session EJBs in order to release non-

serialisable EJB variables. In the AccountControllerBean EJB: the AccountHome

accountHome, Account account and Connection con variables were re-

leased. In the CustomerControllerBean EJB: the CustomerHome customerHome,

Customer customer and Connection con variables were released. Finally, in the

TxControllerBean EJB: the TxHome txHome, AccountHome accountHome and

Connection con variables were released.

Implemented Solution for Passivating and Activating Entity EJBs

The following variables needed to be released in the EJBpassivate method of the

Duke’s Bank Entity EJBs, as follows. The Connection con variable was released in the

AccountBean,CustomerBean and TXBean EJBs.

C.2.4 Database Connections Not Properly Released

Detected Problem

Duke’s Bank application uses Entity beans with Bean Managed Persistence (BMP). This means

that the logic required for persisting the entities’ state in the database (DB) must be provided

in the beans’ code. EJB persistence logic involves connecting to the DB, retrieving, updating

or storing data in the DB and disconnecting from the DB. When disconnecting from the DB,

the original Duke’s Bank code was releasing DB connections correctly but did not release the

connection variables pointing to these connections. This caused exceptions to be raised when

the server/container was trying to passivate the EJB instances holding these variables.

218



Implemented Solution

The EJB variables holding DB connections were set to null, in the

releaseConnection() method of the following classes: AccountBean.java,

TxBean.java, CustomerBean.java, AccountControllerBean.java,

TxControllerBean.java, CustomerControllerBean.java, as follows. The

releaseConnection() method was modified by adding the following statement: con

= null;. The statement was added somewhere after the statement closing the database

conection con.close();.

C.2.5 Stateful Session Bean Instances Not Released at the

End of HTTP Sessions

Detected Problem

In the original Duke’s Bank distribution, the BeanManager class’s constructor creates in-

stances of several Stateful Session EJBs: AccountController,CustomerController

and TxController. These EJB instances should be removed when the http session asso-

ciated with the BeanManager class terminates. For this purpose, the BeanManager class

provides a destroymethod, but this method is never actually called. The destroymethod

of a BeanManager instance should be called before the invalidation of the http session us-

ing that instance. The destroy method should be implemented so as to release the Stateful

Session bean instances associated with the BeanManager instance. As each BeanManager

instance is responsible for managing one user session, the EJB instances used during that ses-

sion should be released at the end of the session. However, in the original Duke’s Bank, the

destroy method was never actually called. In addition, the destroy method was merely

setting the variables pointing to the EJB instances to null, without actually releasing the in-

stances first. Consequently, the Stateful Session bean instances were not released. Thus these

instances were unnecessarily kept in the container cache until passivated or/and until they

expired and were removed by the EJB container.

Implemented Solution

In order to release Stateful Session EJB instances, the BeanManager’sdestroy()method

was modified as follows. Statements for releasing the Stateful Session bean instances were

added: custctl.remove(); acctctl.remove(); txctl.remove();. These ad-

ditions were placed before the statements that were setting the acctctl, custctl and

txctl variables to null. In addition, The logoff.jsp file was modified so as to call the

BeanManager’sdestroy()method upon the http session’s termination (code C.2).

Listing C.2: Removing the BeanManager from terminated HTTP sessions

1 BeanManager beanManager = ( BeanManager) ( s e s s i o n . g e t A t t r i b u t e ( ”beanManager” ) ;

2 beanManager . destroy ( ) ;

3 s e s s i o n . removeAttribute ( ”beanManager” ) ;

4 request . ge t Sess ion ( f a l s e ) . i n v a l i d a t e ( ) ;
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C.2.6 Result Sets Not Closed After No Longer Used

Observed Symptom

JBoss raises the following runtime WARNING:

WARN [WrappedConnection] Closing a result set you left open!

Please close it yourself.

java.lang.Exception: STACKTRACE

at org.jboss....WrappedStatement.registerResultSet(...)

at org.jboss....WrappedPreparedStatement.executeQuery(...)

at com.sun.ebank.ejb.account.AccountBean.loadAccount(...)

at com.sun.ebank.ejb.account.AccountBean.ejbLoad(...)

at sun.reflect.NativeMethodAccessorImpl.invoke0(...)

at sun.reflect.NativeMethodAccessorImpl.invoke(...)

Detected Problem

In Duke’s Bank, Result Sets are used to implement the Entity EJBs’ Bean Managed Persistence

(BMP) functionality. The Result Sets are used to store collections of data, obtained in response

to SQL requests to the DB. Result Sets can be browsed iteratively for accessing individual

data items and should be closed after no longer used, to safe system resources. Though, in

the original Duke’s Bank distribution several Result Sets were not being closed even after no-

longer used, potentially impacting on the system’s performance.

Implemented Solution

The Duke’s Bank methods that were using Result Sets were modified so as to close the

opened Result Sets after no longer using them. The following code was added for this

purpose: rs.close(); rs = null; (where rs is the Result Set variable). The addition

was inserted before the prepared statement for making SQL requests to the DB was closed

(i.e. prepStmt.close();). This modification was made for all EJB methods that used

Result Sets, as follows. In the com.sun.ebank.ejb.account.AccountBean Entity

bean, the loadCustomerIds, loadAccount, selectByCustomerId(String

customerId) and selectByPrimaryKey(AccountBean) methods

were modified. In the com.sun.ebank.ejb.tx.TxBean Entity

bean, the selectByAccountId(TxBean), loadTx(TxBean) and

selectByPrimaryKey(String primaryKey) methods were modified to close

Result Sets.
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APPENDIX

D

Configuring OpenSTA to

Simulate Client Load

The Open System Testing Architecture (OpenSTA) is distributed software architecture for per-

formance testing. The current OpenSTA toolset can perform scripted http and https tests and

execute performance measurements on Windows platforms. OpenSTA provides support for

a ’record and replay’ metaphor that allows specifying and running heavy-load testing scripts.

Specifically, testers can record client sessions using their own browsers. Recorded sessions

are automatically transformed into simple testing scripts, which can be further edited and

controlled via a high-level scripting language. A high-performance load-generation engine

can be subsequently configured to play-back scripted sessions and simulate multiple users.

This methodology can be used to generate realistically heavy loads, simulating the activity of

thousands of virtual users.

Results and statistics can be collected and graphically displayed during the performed tests.

Various data collection mechanisms can be selected, configured or specified by the user, in-

cluding scripted timers, SNMP data, Windows Performance Monitor stats and http results and

timings. Logged results can be graphically viewed during runtime and subsequently viewed,

graphed, or exported to more sophisticated tools for further processing (e.g. Microsoft Office

Excel).

The OpenSTA toolset was used in the thesis experimental work to simulate user load on the

Duke’s Bank J2EE application (section 5.2.7). This section describes the most important con-

figurations and scripting implementations performed on OpenSTA for this purpose.

D.1 Test Executer Initialization

Several parameters can be set to customise OpenSTA’s HTTP Test Executer’s1 op-

eration at runtime. This can be achieved via the TestExecuter web.ini

initialisation file, located in OpenSTA’s installation Engines directory (i.e.

<OpenSTA HOME>/Engines/TestExecuter web.ini).

1OpenSTA Documentation – HTTP Test Executer Initialization File; http://www.
opensta.org/docs/ug/os-appen.htm
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Code D.1 shows the configuration settings used to load test the Duke’s Bank.

Listing D.1: Test Executer initialization file configurations
1 [ FILES ]

2 TraceLevel=0

3

4 [SOCKET]

5 MaxSocketDataBuffersCount =256000

6 SocketDataBuffersGrowingCount=200

7 MaxSSLConcurrentReq =8000

8 SSLGrowingBuffCount=100

9 Timeout=720000

10 ReuseAddr=0

11 Linger=0

12

13 [ TEST]

14 B rowserPara l le l i sm=4

15 I n i t i a l V i r t u a l U s e r C o u n t=1000

16 VirtualUserGrowBy=10

17

18 [THREAD POOL]

19 ThreadPoolSize =4

20 ThreadPoolConcurrentThreads=100

The configuration parameters that were set to differ from their initial default values are de-

scribed next.

The HTTP playback request timeout was configured to change the default value of 60,000 ms

(1 minute) to an increased 720,000 ms (12 minutes) value. The reason was that the default

1 minute timeout value was too small for the high-load limited-resources testing conditions.

Increasing this parameter’s value eliminated timeout errors that previously occurred. This

configuration was achieved by adding a Timeout parameter to the [SOCKET] section of

the TestExecuter web.ini file. The Linger=0 and ReuseAddr=0 settings were also

added to the [SOCKET] configuration section to prevent ’socket address already

in use’ errors. Such errors occurred when the OpenSTA load injector could no longer allo-

cate new sockets for making requests. This is due to the fact that Windows limits the maximum

number of open sockets (i.e. 5000 maximum user ports minus the first 1024 reserved ports).

D.2 Scripting Configurations

A client usage scenario for the Duke’s Bank was recorded and stored as an OpenSTA script.

The scenario involved several operations, including the client logging in, listing all their bank

accounts, then listing all banking transactions from a selected account and finally logging out

of the bank. The recorded script was subsequently modified so as to utilise variable values

for the users’ identities and accessed banking accounts. This was necessary when simulating

multiple concurrent users, in order to avoid the unlikely situation in which a single user logs

in and manages the same bank accounts in parallel, at the same time.

A USERNAME variable was defined to represent a user’s identity as part of each simulated

client session (code D.2). The username variable was set to take values corresponding to valid
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user ids in the Duke’s Bank customer database table (i.e. user id values between 300 and

1299). The scope of the username variable was set to SCRIPT, meaning that the variable was

shared between all concurrent script instances simulating parallel running clients. Similarly,

another variable was defined to provide different account id values for the managed banking

accounts. The ACCOUNT ID variable was set to take valid account id values corresponding

to the Duke’s Bank account database table (i.e. account id values between 0 and 999). The

username and account id variables were set to cyclically take one of the possible valid values

defined (i.e. NEXT USERNAME, NEXT ACCOUNT ID). A MUTEX was used to synchronise

concurrently simulated clients and avoid multiple script instances from simultaneously ac-

quiring the same username and account id values. As such, each simulated client session

acquires the mutex token before allocating variable values and releases it afterwards (Figure

D.3). A third variable was defined to allow random waiting times between sequential user

and account id value allocations. The purpose of such random delays was to avoid having

multiple simulated client scripts allocating identical user and/or account ids at the same time.

Finally, the defined variables were used to replace hard-coded script values that were initially

set during the client session recording procedure. Figure D.4 shows how the username and

account id variables are incorporated into the recorded http requests to the Duke’s Bank.

Listing D.2: Defining scripting variables
1 CHARACTER∗512 MY USERNAME, LOCAL

2 CHARACTER∗512 USERNAME ( ” 300 ” , ” 301 ” , ” 302 ” &

3 , ”303 ” , ”304 ” , ”305 ” &

4 , ”306 ” , ”307 ” . . . ” 1298 ” , ” 1299 ” ) , SCRIPT

5

6 INTEGER ONE RANDOM WAIT, LOCAL

7 INTEGER RANDOM WAIT ( 0 , 1 , 2 &

8 , 3 , 4 , 5 &

9 . . .

10 , 196 , 197 &

11 , 198 , 199 , 200 ) , SCRIPT

12

13 CHARACTER∗512 MY ACCOUNT ID , LOCAL

14 CHARACTER∗512 ACCOUNT ID ( ”0” , ”1” , ”2” &

15 , ”3” , ”4” , ”5” &

16 , ”6” , ”7” , ”8” &

17 , ”9” , ”10 ” , ”11 ” &

18 , ”12” , ”13” , ”14” &

19 . . .

20 ” 999” ) , SCRIPT

Listing D.3: Synchronously allocating sequential variable values
1 ACQUIRE MUTEX ”LOGIN”

2 NEXT RANDOM WAIT

3 SET ONE RANDOM WAIT = RANDOM WAIT

4 WAIT ONE RANDOM WAIT

5 NEXT USERNAME

6 SET MY USERNAME = USERNAME

7 NEXT ACCOUNT ID

8 SET MY ACCOUNT ID = ACCOUNT ID

9 RELEASE MUTEX ”LOGIN”

10

11 LOG ”MY USERNAME: ” , MY USERNAME
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12 LOG ”MY ACCOUNT ID : ” , MY ACCOUNT ID

Listing D.4: Inserting and using variables into http client calls
1 PRIMARY POST URI ” h t t p : // l o c a l h o s t : 8080/ bank/ j s e c u r i t y check HTTP/1 . 0” ON 2 &

2 HEADER DEFAULT HEADERS &

3 ,WITH {” Accept : image/gi f , image/x−xbitmap , image/jpeg , image/pjpeg , ∗/∗” , &

4 ” Referer : h t t p : // l o c a l h o s t : 8080/ bank/logon ; j s e s s i o n i d =1C2C69E348B8” &

5 ”342EB1C28AD450C9D41C” , &

6 ”Accept−Language : en−i e ” , &

7 ”Content−Type : a p p l i c a t i o n /x−www−form−urlencoded” , &

8 ” Connection : Keep−Alive” , &

9 ”Content−Length : 30 ” , &

10 ”Pragma : no−cache ” , &

11 ”Cookie : ”+cookie 1 0} &

12 ,BODY ” j username=”+MY USERNAME+”&j password= j 2 e e ”

13

14

15 PRIMARY GET URI ” h t t p : // l o c a l h o s t : 8080/ bank/accountHist ? accountId=”+MY ACCOUNT ID+”&

date=0&year=20” &

16 ”04&sinceMonth=8&sinceDay=1&beginMonth=8&beginDay=1” &

17 ”endMonth=8&endDay=1&a c t i v i t y V ” &

18 ”iew=0&sortOption =0 HTTP/1 . 0” ON 4 &

19 HEADER DEFAULT HEADERS &

20 ,WITH {” Accept : image/gi f , image/x−xbitmap , image/jpeg , image/pjpeg , ∗/∗” , &

21 ” Referer : h t t p : // l o c a l h o s t : 8080/ bank/accoun t L is t ” , &

22 ”Accept−Language : en−i e ” , &

23 ” Connection : Keep−Alive” , &

24 ”Cookie : ”+cookie 1 0}
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