
1569136036

1

Abstract— The recent proliferation of ever smaller and smarter

electronic devices, combined with the introduction of wireless

communication and mobile software technologies enables the

construction of a large variety of pervasive applications, such as

home supervision and alarm systems. The inherent complexity of

such applications along with their non-expert clientele raises the

necessity for Autonomic Management solutions. Nonetheless, such

solutions remain difficult to conceive, as they must deal with the

increased volatility, heterogeneity and distribution of the

pervasive domain, while ensuring stringent performance and

dependability requirements. This paper proposes that reusable

support for Autonomic Management solutions be provided by

middleware platforms, along with already existing middleware

services, such as security and transactions. Following this

approach, a service oriented component platform, iPOJO, was

extended with elementary Autonomic Management capabilities.

These include monitoring and effector touchpoints, as well as

embedded Autonomic Management functions, such as service

dependency management. IPOJO is an open source Apache

project and has been successfully employed to implement several

research projects in the pervasive domain. This paper presents

iPOJO’s extension with reusable Autonomic Management

middleware services.

Index Terms— autonomic management, pervasive computing,

middleware, service oriented components, software engineering

I. INTRODUCTION

UR present living environments are being increasingly

populated with ever smarter and smaller electronic

devices. The introduction of such communicating devices has

already changed the way we interact with our social and

physical environments. However, this seems to be a mere

beginning, as devices continue to feature progressively more

capabilities and to increasingly cooperate with each other for

providing new, higher-level services [1]. Still, important

scientific and technical challenges must be tackled before

fulfilling the pervasive computing vision. The development of

high-level services using heterogeneous, distributed and

Manuscript received June 20, 2008. This work was carried out as part of

the ANSO project, which was partially supported by the French Ministry of

Industry under the European ITEA program.

A. Diaconescu is with the University Joseph Fourier, 38041 Grenoble,

France (phone: +33-476-63-5566; e-mail: ada.diaconescu @ imag.fr).

J. Bourcier is with the University Joseph Fourier, 38041 Grenoble, France

(phone: +33-476-63-5568; e-mail: johann.bourcier @ imag.fr).

C. Escoffier is with the University Joseph Fourier, 38041 Grenoble, France

(phone: +33-476-63-5568; e-mail: clement.escoffier @ imag.fr).

highly-dynamic appliances proves particularly complex a task.

Dynamicity, in particular, is a key characteristic of the

pervasive domain, raising serious difficulties for the

development and management of pervasive solutions. The

execution environment of pervasive applications is constantly

evolving, as users change their social contexts, or physical

locations. Continuous fluctuations in the availability of

software services and electronic gadgets, such as mobile

phones and PDAs, further aggravate the situation. In addition,

local pervasive applications, such as pervasive home gateways,

must occasionally access remote applications, in order to

provide Video on Demand, or Weather forecast services, for

example.

In this context, the autonomy of home and office

applications becomes critical for their successful integration in

our present society. Indeed, clients of such applications are

typically unknowledgeable in the computer science domain.

Consequently, pervasive applications must feature inbuilt

properties such as safety (e.g. fault-tolerance and security) and

self-adaptation to evolving execution contexts (e.g. self-

configuration, self-optimization and self-repair). Nonetheless,

the development and maintenance of autonomic solutions

remains a difficult endeavour, as strict dependability and

performance guarantees must be offered while transparently

dealing with complex technical and social issues.

From a technological point of view, Service Oriented

Computing (SOC) provides the basic characteristics necessary

for building flexible and reusable applications with complex

and adaptable functionalities. The modularity and loose-

coupling properties inherent to the SOC paradigm offer the

opportunity for ad-hoc service compositions and dynamic

change. Nonetheless, available Service Oriented Architecture

(SOA) platforms implementing the SOC paradigm currently

lack the necessary intrinsic functions for performing concrete

service compositions and runtime modifications.

This paper proposes extending SOA platforms with inherent

self-management capabilities, in order to support the creation

of autonomic pervasive systems. iPOJO
1
 service oriented

component platform was selected for following this approach.

This paper presents how iPOJO platform was applied and

extended for providing inherent self-management services.

This allows pervasive applications built and deployed on

iPOJO platforms to obtain self-management support from the

underlying middleware runtime, hence requiring no extra

Autonomic iPOJO: Towards Self-Managing

Middleware for Ubiquitous Systems

Ada Diaconescu, Johann Bourcier, and Clement Escoffier

O

1569136036

2

effort from service developers or system administrators.

iPOJO is an open source Apache project and has been

successfully employed in the development of several pervasive

computing research projects (e.g. ANSO European Project and

HOMEGA middleware platform [2]). The main contribution

of this paper is to propose an extensible SOA platform, iPOJO,

offering inherent self-configuration, self-repair and self-

optimisation capabilities. The provided platform consequently

facilitates the creation of autonomic pervasive solutions.

II. PERVASIVE COMPUTING AND AUTONOMIC MANAGEMENT

A. Requirements for Successful Pervasive Computing

The success of any pervasive system highly depends on several

key elements, including provided functionalities, Quality of

Service (QoS) and affordability. In short, pervasive

applications must offer services that are useful, or somehow

interesting to the user. In addition, provided functionality must

be associated with domain-specific QoS guarantees, such as

performance, dependability and usability. System performance

allows users to experience natural, real-time interactions with

the pervasive environment. Dependability ensures service

reliability and security and implies that the same behaviour is

experienced every time the system is run in similar execution

scenarios. Application usability implies ease of service

exploitation, with no expert knowledge required and with

minimal maintenance effort necessary for modifying and

evolving the system. Finally, the overall utility of provided

services must overcome the effort required to acquire and

maintain the corresponding pervasive systems. Affordable

pervasive solutions imply that clients are willing to invest the

required resources in exchange for offered functionalities, both

in the short term (e.g. acquisition and installation) and over

long durations (e.g. maintenance).

Our previous work on the iPOJO framework focused on

providing development support for pervasive application

functionalities (e.g. [2], or [3]). This paper addresses QoS and

affordability requirements by adding Autonomic Management

(AM) capabilities to the existing middleware platform.

B. Pervasive Applications Characteristics

Pervasive computing systems generally consist of various

electronic devices and software entities capable of

communicating with one another. Different types of software-

equipped appliances may be available for a variety of

purposes, such as interacting with the real environment,

providing control and display services, or exposing data and

application interfaces to other devices and applications. The

main challenge of the pervasive computing domain is to

provide coherent pervasive environments, offering useful

applications and services, based on an entanglement of

heterogeneous, distributed and dynamic devices and software

services, communicating via various technologies and

protocols. In this context, several characteristics specific to

1 iPOJO service component framework: www.ipojo.org

pervasive equipments make this domain appealing from a

business perspective, while raising difficult problems for

system development and maintenance. Such device properties

include:

• Distribution. Devices are typically scattered across the

physical environment and accessible via diverse protocols,

generally over a wireless communication support.

• Heterogeneity. A vast range of appliances, software

technologies and communication protocols are available in the

pervasive computing domain. A consensus on uniform and

compatible implementations is not presently foreseen.

• Limited resources. Resource availability is generally scarce

on the physical execution platforms employed in pervasive

systems. In the pervasive home context, software applications

typically run on a small gateway, with little memory space and

low processing capabilities.

• Dynamism. Device availability is by far most volatile in

pervasive systems with respect to other computing system

types. This is due to several facts, including: i) users may

freely and frequently change their locations and hence the

locations of equipments they carry; ii) users may voluntarily

activate and deactivate devices, or devices may unexpectedly

run out of battery. This directly impacts on the availability of

services running on these devices; iii) users and providers may

periodically update deployed software services.

In addition to hardware and software dynamism, pervasive

systems are constantly confronted with changes in their

execution contexts. This may include modifications in the

user’s current behaviour, social circumstance, location, mood,

or general routine, as well as changes in other software

applications’ availability and behaviours.

C. Service Oriented Computing Platforms

Service-Oriented Computing (SOC) is a recent popular

technology that uses services as first-class elements for

building software applications. In the SOC context, a service

represents an abstract resource described by a contract.

Contracts specify a service's interfaces, general semantics and

QoS properties, while not referring to the service

implementation. Consequently, services can be supplied by

multiple service providers and feature various

implementations. Available services are registered into one or

more service registries where they can be subsequently found

and recuperated by service consumers. An important

consequence of this interaction pattern is that SOC

technologies support dynamic service discovery and lazy inter-

service binding. Such characteristics are essential when

building applications with strong adaptability requirements.

iPOJO (e.g. [4], [5]) is a service component runtime that

aims to simplify the development of applications on top of

OSGi
2
 SOC Platforms. iPOJO allows the straightforward

development of application logic based on Plain Old Java

Objects (POJO). iPOJO subsequently injects non-functional

facilities into the application components, as necessary. Such

2 OSGi Alliance : www.osgi.org

1569136036

3

facilities include service provisioning, service dependency and

lifecycle management. In addition to providing a reusable set

of non-functional capabilities, iPOJO is seamlessly extensible

to include new middleware functionalities.

The iPOJO framework merges the advantages of component

and service oriented paradigms. Specifically, iPOJO

application functionalities are implemented following the

component orientation paradigm. Each component is fully

encapsulated, self-sufficient and provides server and client

interfaces exposing its functionalities and dependencies,

respectively. As many component-oriented platforms (e.g. Java

EE and .NET), iPOJO separates a component’s application-

specific business logic from its application-independent

functions. As such, iPOJO components consist of a component

implementation that is managed by a reusable container

(Figure 1). iPOJO containers provide common middleware

services to the component implementations they manage (e.g.

distributed communication and lifecycle management). Each

component container can be configured with a different set of

middleware services, implemented as handlers. Once an

iPOJO component is deployed, its provided functions are

published and made available as services, in conformance with

the SOC paradigm. In order for a component’s services to

become valid, all the component’s dependencies must be

resolved. For this purpose, available services corresponding to

a component’s required (or client) interfaces must be found

and connected.

Figure 1: Internal design of an iPOJO component

Finally, iPOJO components can expose internal properties,

which can subsequently be interrogated and modified during

runtime. Among others, service properties enable clients to

evaluate and select the services used when multiple service

providers are available. Each iPOJO instance can be created

with a different configuration of property values.

D. Autonomic Management Benefits and Challenges

Successful pervasive applications must fulfil specific

functionality, QoS and affordability requirements (subsection

A), while dealing with the important technical challenges

associated (subsection B). Autonomic Computing
3
 proposes

constructing software systems capable of managing

themselves, so as to self-optimise, self-configure, self-repair

and self-protect themselves with minimum requirements for

human intervention. Hence, Autonomic Computing promises

affordable solutions to pervasive systems’ distribution,

heterogeneity, resource constrictions and dynamicity, ensuring

system correct functioning, performance and dependability.

The general architecture currently adopted by the

3 Autonomic Computing: www.research.ibm.com/autonomic

Autonomic Computing community consists of a management

control-loop with the following main functions [6] Figure 2): i)

monitoring, for extracting runtime information from the

managed resources and their execution environments; ii)

analysis, for detecting system anomalies based on the

monitoring data; iii) planning, for finding solutions to the

detected problems; and iv) execution, for putting the planned

solutions into practice into the running system. In addition, a

common knowledge base is shared by all functional modules

in the control loop, for providing collective information such

as accumulated system data, or historical records.

Figure 2: Autonomic Management architecture

This logical architecture may be implemented to various

degrees of complexity, depending on the management level

required. Basic reactive management solutions may employ

minimal monitoring probes linked to system effectors via

simple event-condition-action (ECA) policies. Sophisticated

management solutions may require more complicated analysis

and planning capabilities, for detecting a larger spectrum of

anomalies (e.g. congestion tendencies, or oscillating system

states) and for considering multiple, possibly conflicting

management concerns (e.g. performance, repair and security).

Reusable tools and platforms are stringently needed today

for assisting in the development of AM solutions. The current

lack of such reusable tools means that each AM solution is

built in isolation and in an ad-hoc manner (e.g. Jasmine
4
, Jade

[7], or Rainbow [8]). Developing such solutions from scratch

requires non-negligible efforts and costs, which are then

largely replicated for different AM applications.

III. AUTONOMIC IPOJO PLATFORM

A. Solution Overview

The development of dependable and efficient AM applications

remains a difficult and costly a task. However, most

elementary autonomic functionalities are applicable across

multiple AM solutions. Such functionalities include

monitoring and effector touchpoints accessible via standard

communication protocols, such as JMX, or Web services.

They also include simple anomaly detection functions, such as

noticing when a monitored value crosses a predefined

threshold, or when an inter-service binding is broken. Finally,

common decision policies may be specified for solving most

frequent anomalies, such as instantiating new servers to

resolve resource contention, or finding alternative service

providers when previous ones become unavailable.

This paper argues that common autonomic functions should

4 Jasmine project: wiki.jasmine.objectweb.org

1569136036

4

be provided as reusable middleware services, offered by

middleware platforms. Most recent component platforms

already provide reusable middleware services such as security,

or transactions (e.g. Java EE
5
 and .NET

6
). This paper proposes

extending such platforms with AM specific services. This

solution enables software applications based on such platforms

to obtain inherent AM support. In this context, provided AM

services must be seamlessly configurable, in order to conform

to the particular administrative goals of each application.

The proposed approach facilitates the construction of AM

solutions starting from elementary AM functions, provided by

the middleware platform. Reusable AM middleware services

offer a common base for building more complicated

management behaviours. Eventually, middleware platforms are

progressively enhanced and extended to provide increasing

AM support, with growing functional complexity. The work

presented in this paper was carried out to follow this approach.

It consisted of extending a service oriented component

platform – iPOJO, with common AM capabilities. These

include various monitoring and effector touchpoints, as well as

several AM services, completely integrated into the iPOJO

platform. Figure 3 positions the AM facilities introduced with

respect to the iPOJO component infrastructure. The figure

shows how AM services are integrated into the iPOJO

component membranes, just like any other middleware service

that iPOJO provides. As any other iPOJO handlers, AM

services can interact and collaborate with each other in order

to combine their behaviours. Figure 3 shows how monitoring

and effector touchpoints are provided at the component

membrane level. Touchpoints obtain information and act upon

a component’s services, as well as on its AM service facilities.

Figure 3: AM extensions for iPOJO components

Finally, Figure 4 shows how the AM facilities provided at

iPOJO platform level are employed by external applications.

Such applications may consist of administrative consoles,

offering various runtime views of managed applications and

the means to perform necessary reconfiguration operations.

Provided iPOJO AM extensions are described in further

details over the following subsections.

B. iPOJO Monitoring Touchpoints

In iPOJO applications, services may expose internal

properties, whose values are used for service configuration

purposes. Monitoring such properties allows notifying

administrators of service configuration changes. For this

purpose, iPOJO was extended with a property monitoring

touchpoint, enabling the remote observation of iPOJO

5 Sun Microsystems’ Java EE technology: java.sun.com/javaee
6 Microsoft’s .NET Framework: msdn.microsoft.com/en-us/netframework

property values. iPOJO offers standard JMX
7
 support for

remote access to property values and update notifications.

Besides service properties, accurate runtime models of an

application’s architecture constitute a critical facility for

system management. Nonetheless, the runtime model of an

iPOJO application cannot be statically inferred from the

individual implementations and configurations of its

constituent components. The main reason is that the iPOJO

platform resolves service dependencies during runtime

(subsection II.C) and the resulting service interconnections are

difficult to predict beforehand. Moreover, an iPOJO

application’s architecture may repetitively change during

runtime, as various service providers become available or

unavailable. For these reasons, an Architecture touchpoint was

provided to allow system administrators collect information on

iPOJO applications’ runtime architectures (i.e. iPOJO

instances and their interconnections). The Architecture

touchpoint enables iPOJO components to expose their runtime

states and current dependencies. For each component

dependency, the published information includes: i) the

dependency state (i.e. resolved, or unresolved); ii) the

dependency configuration (i.e. mandatory or optional, simple

or aggregated, using a certain service filter or binding policy);

and iii) information on the currently used service provider (i.e.

provider name, or location). This data provides sufficient

information for inferring an application’s runtime

interconnection graph. The Architecture service communicates

with other iPOJO middleware services, or handlers, in order to

collect and disseminate information on their internal states.

Figure 4: Utilisation of iPOJO AM facilities

C. iPOJO embedded AM services

Service dependency management is the most important AM

service that iPOJO provides. A service dependency implies

that the service declaring the dependency requires a provider

that fits the dependency’s specification (i.e. service type). If a

service’s dependency is mandatory, then the service cannot be

validated until bound to a service provider that corresponds to

the dependency requirements. iPOJO provides an embedded

AM service for managing service dependencies. This service

provides several autonomic functions, such as the

dependency’s initial configuration, runtime repair and dynamic

optimisation. These functions are described as follows.

Initially, the dependency management service of an iPOJO

component discovers the service providers that match the

7 Java Management Extension Technology:

java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement

1569136036

5

component’s dependency requirements. Then the dependency

manager selects one of the suitable providers and creates a

binding to it, hence resolving the service dependency. During

service execution, the dependency manager detects broken

service bindings (e.g. the bound service provider becomes

unavailable) and repairs them by discovering and binding to an

alternative provider. The service discovery, selection and

binding process (whether initial, or following a binding fault)

is based on the following criteria.

Only service providers that meet the dependency’s service

specification can be bound for resolving a dependency. If

multiple providers meet this criterion, the dependency manager

selects one of these providers, depending on the dependency’s

configuration. Several parameters are available for tuning the

selection procedure. A dependency’s parameters may include a

filter (LDAP-style property-value pairs), a comparator (an

application-specific ranking function) and a binding policy

(taking into account previous provider selections).

Besides the initial binding configuration and repair

facilities, the dependency management service can be

configured to continually optimise service dependencies

during runtime. This is achieved via a special dependency

filter, called context filter, which allows the use of context

parameters in its specification. This filter is updated each time

the corresponding context parameters are modified,

consequently triggering the service dependency re-evaluation.

This enables services to automatically optimise their

dependency bindings with respect to their changing execution

environments. This means that a service provider that was

optimal in a certain context may be automatically replaced by

a different service provider, which becomes the optimal choice

in a new execution context. The context filter can be specified

to trigger the dependency optimisation each time a new service

provider with the required specification becomes available.

D. iPOJO effector touchpoints

iPOJO effector touchpoints are provided for modifying iPOJO

components, as well as iPOJO AM services (Figure 3). The

most important effectors are as follows. First, a property

effector touchpoint enables the dynamic modification of

iPOJO property values. iPOJO provides support for remotely

accessing this touchpoint via JMX. This effector allows

reconfiguring iPOJO instances during runtime. Next, a

dependency management effector enables modifying any

dependency parameter (e.g. optional/mandatory,

aggregate/simple, binding policy and filter), with the exception

of the dependency’s service specification. For example, when

a display service is required, users may prefer providers

offering maximum display sizes and resolutions when they are

alone (e.g. LCD screens) and providers ensuring maximum

privacy when in a social context (e.g. PDAs). This can be

achieved by dynamically changing the dependency filter of the

service requiring the display, so as to follow the user’s social

context. Care must be taken when performing dependency

modifications, in order to ensure service configurations remain

coherent with service implementations. For example, a service

that expects to use a single service provider may not function

properly when configured to use an aggregated dependency.

Finally, a lifecycle effector enables operations such as

service deployment, starting, instantiation, stopping and

undeployment. This effector is provided at iPOJO platform

level, while the property modification and dependency

management effectors are implemented at the component

container level. The lifecycle service allows the dynamic

update of a service’s implementation, if the service’s undeploy

and deploy operations are sequentially called. Client bindings

to the updated service are automatically repaired by the

clients’ corresponding dependency managers.

IV. RELATED WORK

Most component and service technologies are beginning to

offer monitoring and effector facilities via special-purpose

interfaces, accessible via standard protocols (e.g. JMX), or via

proprietary administrative consoles. In the SOC context, the

importance of introducing management facilities in service

applications is reflected by the publication of specific Web

services standards, such as Web Service Distributed

Management (e.g. [9]). Several research projects aim at

enhancing existing component technologies in order to provide

accurate architectural information during runtime (e.g. JADE

[7] for the Fractal
8
 technology, and [10] for Java EE servers).

To the authors’ knowledge none of the existing component or

service technologies offers inherent support for dynamic

composition and dependency resolution. Although certain

technologies such as Jini
9
, OSGi

10
 or Web services were

conceived to support such tasks, the actual implementation for

supporting them is largely left to application developers.

Research work in the areas of multi-agent systems, self-

organisation and emergent behaviours is the closest to address

autonomic management of functional dependencies during

runtime. For example, the Jack-in-the-Net [12] (or Ja-Net)

framework uses multi-agent concepts and biology-inspired

mechanisms to create adaptive services in large-scale, open

network environments. In Ja-Net, self-organising Cyber

Entities dynamically create emergent services, depending on

network conditions and user preferences. Such approaches are

complementary to the work presented here and can be

considered for extending iPOJO technology. Nonetheless,

many of the implementations available in these areas are

currently in the prototyping phase, while iPOJO is a mature,

extensible technology, available as an open source platform.

Certain researches on reusable middleware platforms for

pervasive computing have similar objectives with the

presented work. For example, [11] proposes a reconfigurable,

context-sensitive middleware for component-based pervasive

applications. This platform exclusively focuses on context-

awareness and ad-hoc communication aspects. It presents

interesting concepts that could be considered for enriching

8 Fractal Project : fractal.objectweb.org
9 Jini Technology : incubator.apache.org/river
10 OSGi Alliance : www.osgi.org

1569136036

6

iPOJO containers with self-configurable, context-aware AM

services. Nonetheless, the research presented here has a larger

scope, envisaging the integration of multiple Autonomic

Computing concerns into iPOJO technology. iPOJO is a highly

extensible and configurable platform, allowing the

introduction of new middleware services and the creation of

customised component containers.

V. DISCUSSION ON SOCIAL IMPACT

The development of pervasive computing applications and

their adoption by the general public has an increasingly strong

impact on our social environment. Autonomic Computing

offers the key for rendering pervasive applications accessible

to a large public, requiring minimum administrative effort and

least technical knowledge. It aims at allowing non-expert users

seamlessly install and administer pervasive applications, as

well as create new applications from existing functionalities.

This means that computing systems will no longer remain

restrained to expert engineering environments and will instead

become available to the general public. Service oriented

technologies with inherent AM functions provide the essential

support for implementing this vision. This section describes

several sample scenarios that indicate the type of interactions

supported by pervasive environments with AM capabilities.

Several service types are generally employed for assembling

a large range of pervasive applications. Such applications

typically include input services (e.g. sensors, consoles, or

remote Web services), data-processing services (i.e. services

that implement application-specific business logic) and output

services (e.g. LCD displays, alarms, or messaging services).

Based on such services, AM platforms allow the seamless

creation, control and evolution of context-aware applications

and the integration of virtual information into the real world.

iPOJO provides AM support by handling inter-service

dependencies, service reconfiguration, repair and optimisation.

A simple service reconfiguration example may consist of a

lamp that modifies its light colour depending on weather

information from a remote Web service. In this example,

iPOJO automatically finds and connects the lamp driver to a

weather service, locates alternative weather providers in case

the initial connection is broken and provides the means of

modifying the value of the lamp colour parameter. In a more

sophisticated example, a video camera, image-recognition

service and sound system may be combined with various

specific services for creating different applications. Resulting

services may involve playing ambient tunes when a home

owner enters the living room, or sounding an alarm when a

suspect intrusion is detected. In this scenario, customers

purchase the various devices and software packages from

different providers. Based on these services they create the two

applications by simply deploying all services on an autonomic

SOA platform, such as iPOJO and specifying their high-level

preferences. Intuitive administrative consoles allow non-

technical users to add and remove services from the underlying

platform and to express their preferences with respect to

service behaviours. Considering the alarm application

example, a deployed video driver automatically finds and

connects to an intrusion-detection service, which discovers and

binds to a sound system driver. The local iPOJO platform

automatically manages service dependencies and may

periodically connect to external provider websites for updating

relevant driver services [3].

Over time, customers may decide to replace certain devices

and services of their applications (e.g. purchase a better video

camera, or a bigger LCD screen). iPOJO automatically updates

the concerned applications in order to use newly detected

devices and optimise applications with respect to user

preferences (e.g. use the biggest display appliance available).

In case a new device breaks down and becomes unavailable,

iPOJO automatically repairs concerned applications by

switching back to previous configurations (i.e. employing the

old device models). The administrative operations described

require minimal human intervention and no specific

development effort from service providers. iPOJO platform

offers the necessary AM services by default.

iPOJO is a service component platform offering built-in AM

support. This paper described the most important autonomic

features that iPOJO currently provides. As an extendible

platform, iPOJO will be progressively enhanced with

additional AM features, so as to render application creation

and management easier, faster and more dependable.

REFERENCES

[1] Mark Weiser, “The computer for the 21st century”, Scientific American,

265(3):66-75, September 1991

[2] C. Escoffier, J. Bourcier & P. Lalanda. “Toward an Application Server

for Home Applications”, 5th IEEE Consumer Communications and

Networking Conference (CCNC’08), Las Vegas, USA, 2008.

[3] A. Bottaro, J. Bourcier, C. Escoffier and P. Lalanda, “Context-Aware

Service Composition in a Home Control Gateway”, 4th IEEE

International Conference on Pervasive Services, Turkey, July 2007

[4] C. Escoffier, R. S. Hall & P. Lalanda. “iPOJO An extensible service-

oriented component framework”, IEEE International Conference on

Service Computing (SCC'07), Salt Lake City, USA, 2007

[5] C. Escoffier & R. S. Hall. “Dynamically adaptable applications with

iPOJO service components”, 6th Conference on Software Composition

(SC’07), Braga, Portugal, 2007

[6] An architectural blueprint for autonomic computing. Technical report,

IBM, June 2005

[7] S. Sicard, F. Boyer, and N. D. Palma, “Using components for

architecture-based management: the self-repair case”, in Proceedings of

the 30th International conference on Software engineering (ICSE ’08),

Leipzig, Germany, May 2008, pp 101–110

[8] D. Garlan, S. W. Cheng, A.C. Huang, B. Schmerl, and P. Steenkiste,

“Rainbow: Architecture-based self-adaptation with reusable

infrastructure”, Computer, 37(10), pp 46–54, 2004

[9] H. Kreger and T. Studwell, “Autonomic computing and Web Services

Distributed Management”, IBM online article:

www.ibm.com/developerworks/autonomic/library/acarchitect, 2005

[10] Trevor Parsons and John Murphy: "Detecting Performance Antipatterns

in Component Based Enterprise Systems", in Journal of Object

Technology, vol. 7, no. 3, March - April 2008, pp. 55-90

[11] S. S. Yau et. al, “Reconfigurable Context-Sensitive Middleware for

Pervasive Computing”, IEEE Pervasive Computing, 2002, pp 33-40

[12] T. Itao et. al, “Service Emergence based on Relationship among Self-

Organising Entities”, in Proceedings of IEEE Symposium on

Applications and the Internet, January 2002, pp 194-203

